Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306255
Title: Parsimonious models of multivariate binary time series: statistical estimation and forecasting
Authors: Shibalko, Siarhei
Kharin, Yuriy
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2023
Publisher: Minsk : BSU
Citation: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 296-299.
Abstract: This paper is devoted to parsimonious models of multivariate binary time series. Consistent asymptotically normal statistical estimators for the parameters of proposed parsimonious models are constructed. Algorithms for statistical estimation of model parameters and forecasting of future states of time series are presented. Results of computer experiments on simulated and real statistical discrete-valued data are given
URI: https://elib.bsu.by/handle/123456789/306255
ISBN: 978-985-881-522-6
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
296-299.pdf440,26 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.