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Abstract—This paper is devoted to parsimonious models of 

multivariate binary time series. Consistent asymptotically 

normal statistical estimators for the parameters of proposed 

parsimonious models are constructed. Algorithms for statistical 

estimation of model parameters and forecasting of future states 

of time series are presented. Results of computer experiments on 

simulated and real statistical discrete-valued data are given. 
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I. INTRODUCTION 

The digitalization of the economy and the entire 
surrounding world leads to an increase of datasets in a discrete 
state space with discrete time. To mathematically describe 
such data, discrete, including binary, time series are used. 
Binary time series are used in modeling and data analysis of 
many economic and social processes. Examples of applied 
problems in statistical analysis of binary time series: in 
economics and finance, genetic sequence analysis, analysis of 
data flows in computer information security systems. 
Therefore, statistical analysis of multivariate discrete time 
series is an urgent task in mathematical and applied statistics 
[1, 2]. 

An universal model for description of high depth 
dependencies in discrete time series is a homogeneous 

Markov chain. Let 𝑋𝑡  be a -dimensional homogeneous 
binary Markov chain (N-BMC) of order s ≥ 1, defined on the 
probability space (Ω, ℱ, P): 

𝑋𝑡 = (

𝑥𝑡1
⋮
𝑥𝑡𝑁
)  ∈  𝑉𝑁, 𝑡 ∈ 𝑍, 

 

where 𝑥𝑡𝑖 ∈ 𝑉 = {0,1} − binary random variable specifying 

the i-th component at time t, 𝑖 = 1, … , 𝑁. 

II. PARSIMONIOUS MODELS 

A. Case of conditionally independent components 

Consider the case of conditionally independent 
components under fixed prehistory: 

P{𝑋𝑡 = 𝐽𝑡|𝑋𝑡−1 = 𝐽𝑡−1, . . . , 𝑋𝑡−𝑠 = 𝐽𝑡−𝑠} = 

∏P{𝑥𝑡𝑖 = 𝑗𝑡𝑖|𝑋𝑡−1 = 𝐽𝑡−1, . . . , 𝑋𝑡−𝑠 = 𝐽𝑡−𝑠}

𝑁

𝑖=1

,  

 𝐽𝑡 = (𝑗𝑡𝑖) ∈ 𝑉
𝑆, 

where the conditional probability distribution of the i-th bit 

under fixed prehistory can be represented as: 

P{𝑥𝑡𝑖 = 𝑗𝑡𝑖|𝑋𝑡−1 = 𝐽𝑡−1, . . . , 𝑋𝑡−𝑠 = 𝐽𝑡−𝑠} = 

{
𝑝𝑖(𝐽𝑡−𝑠, … , 𝐽𝑡−1),   𝑗𝑡𝑖 = 1,

1 − 𝑝𝑖(𝐽𝑡−𝑠, … , 𝐽𝑡−1),   𝑗𝑡𝑖 = 0.
 

Introduce a parsimonious model based on basis functions: 

 𝑝 = 𝑝(𝐽1:𝑠) = 𝐹(∑ 𝑏𝑘𝜓𝑘(𝐽1:𝑠)
𝑚
𝑘=1 ), 𝐽1:𝑠 ∈ 𝑉

𝑁𝑠,    (1) 

where 𝐹(∙) − some given absolutely continuous distribution 

function,  𝐵 = (𝑏𝑘 )  ∈ 𝑅𝑚  − a column vector  𝑚 ≤ 2𝑁𝑠 
unknown N-BMC coefficients,  {𝜓𝑘(𝐽1:𝑠)} − basis functions, 

𝐽1:𝑠 = (𝐽1
′ , … , 𝐽𝑠

′)′ ∈ 𝑉𝑁𝑠 − composite column vector 

specifying the s-prehistory. 

     Introduce some assumptions on the function 𝐹 (∙): 

• 0< 𝐹(∙) < 1, 

• 𝐹(∙)  and 𝐹−1(∙) are twice continuously (2) 

differentiable, 

• 𝐹′(∙) ∈ (0; +∞). 

B. Case of probability dependent components 

Consider the case of probability dependent components 
under fixed prehistory 𝐶𝑡 = {𝑋𝑡−1 = 𝐽𝑡−1, . . . , 𝑋𝑡−𝑠 = 𝐽𝑡−𝑠} : 

P{𝑋𝑡 = 𝐽𝑡|𝐶𝑡} = P{𝑥𝑡1 = 𝑗𝑡1|𝐶𝑡} ∙ P{𝑥𝑡2 = 𝑗𝑡2|𝑥𝑡1 = 𝑗𝑡1, 𝐶𝑡} 
 ∙ … ∙ P{𝑥𝑡𝑁 = 𝑗𝑡𝑁|𝑥𝑡1 = 𝑗𝑡1, … , 𝑥𝑡,𝑁−1 = 𝑗𝑡,𝑁−1, 𝐶𝑡}, 

where the conditional distribution of the i-th bit under fixed 

prehistory can be represented in the following form: 
first component: 

P{𝑥𝑡1 = 𝑗𝑡1|𝐶𝑡} = 

{
𝑝1(𝐽𝑡−𝑠, … ,  𝐽𝑡−1),     𝑗𝑡,1 = 1,  

1 − 𝑝1(𝐽𝑡−𝑠, … ,  𝐽𝑡−1), 𝑗𝑡,1 = 0.
 

other components: 

P{𝑥𝑡𝑖 = 𝑗𝑡𝑖|𝑥𝑡1 = 𝑗𝑡1, … , 𝑥𝑡𝑖−1 = 𝑗𝑡𝑖−1, 𝐶𝑡} = 

= {
𝑝𝑖(𝑥𝑡1, … , 𝑥𝑡𝑖−1, 𝐽𝑡−𝑠, … ,  𝐽𝑡−1),     𝑗𝑡𝑖 = 1,  

1 − 𝑝𝑖(𝑥𝑡1, … , 𝑥𝑡𝑖−1, 𝐽𝑡−𝑠, … ,  𝐽𝑡−1),    𝑗𝑡𝑖 = 0.
 

Similarly to (1), introduce a parsimonious model based on 
basis functions: 

        𝑝 = 𝑝(𝐽1:𝑠) = 𝐹(∑ 𝑏𝑘𝜓𝑘(𝐽1:𝑠)
𝑚
𝑘=1 ), 𝐽1:𝑠 ∈ 𝑉

𝑁𝑠,     (3) 

where 𝐹(∙) − some fixed absolutely continuous distribution 

function,  𝐵 = (𝑏𝑘 )  ∈ 𝑅𝑚  − a column vector  𝑚 ≤ 2𝑁𝑠 
unknown N-BMC coefficients,  {𝜓𝑘(𝐽1:𝑠)} − basis functions, 

𝐽1:𝑠 = (𝐽1
′ , … , 𝐽𝑠

′)′ ∈ 𝑉𝑁𝑠 − composite column vector 

specifying the s-prehistory. 
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C. Using artificial neural nets for basis function 

approximation 

      In this case artificial neural nets are used to approximate 

basis function {𝜓𝑘(𝐽1:𝑠)} in models (1) and (3): 

𝑝 = 𝑝(𝐽1:𝑠) = 𝐹(∑ 𝑏𝑖𝐹( ∑ 𝑎𝑖𝑘𝑗𝑘
𝑠
𝑘=1

𝑚
𝑖=1 )), 𝐽1:𝑠 ∈ 𝑉

𝑁𝑠,   (4) 

where  𝐹(∙), 𝐹1(∙), … , 𝐹𝑚(∙)  are some fixed absolutely 

continuous distribution functions (activation functions), 𝐵 =
(𝑏𝑖) ∈ 𝑅

𝑚 − a column vector  𝑚 unknown parameters, 𝐴 =
(𝑏𝑖𝑘) ∈ 𝑅𝑚∗𝑠. 

      This neural model can be realized as a 2-layer neural net 

with s inputs, 1 output, m neurons on the first layer and 1 

neuron on the second layer [4]. 

III. STATICAL ESTIMATION OF PARAMETRES 

Let the observed time series of length T is 

𝑋1:𝑇 = (𝑋1, … , 𝑋𝑇) ∈ 𝑉
𝑇𝑁. 

Using FBE (Frequencies-Based Estimation) method 
proposed in [5], we construct a statistical estimator for the 
parameter vector B of models (1) and (3) based on the 
observed implementation 𝑋1:𝑇. 

Construct consistent (at 𝑇 → +∞) statistical estimators for 
transition probabilities: 

�̂�(𝐽1:𝑠) =

{
 

 
𝑇 − 𝑠

𝑇 − 𝑠 + 1
∙
𝑣𝑠+1
𝑇 (𝐽1:𝑠; 1)

𝑣𝑠
𝑇(𝐽1:𝑠)

, 𝐽1:𝑠  ∈ 𝑱
(𝑠),

1

2
,                                          𝐽1:𝑠  ∉ 𝑱

(𝑠),

 

1) Case of conditionally independent components 

 𝑣𝑠
𝑇(𝐽1:𝑠) = ∑𝟏{𝑋𝑡 = 𝐽𝑡 , . . . , 𝑋𝑡−𝑠 = 𝐽𝑡−𝑠}

𝑇

𝑡=𝑠

, 

𝑣𝑠+1
𝑇 (𝐽1:𝑠; 1)∑𝟏{𝑥𝑡+1,𝑖 = 1, 𝑋𝑡 = 𝐽𝑡 , . . . , 𝑋𝑡−𝑠 = 𝐽𝑡−𝑠}

𝑇

𝑡=𝑠

, − 

s-tuple frequencies 𝐽1:𝑠 and (𝐽1:𝑠; 1), 

𝑱(𝑠) = {𝐽1:𝑠 ∈ 𝑉
𝑁𝑠 ∶  𝑣𝑠

𝑇(𝐽1:𝑠) > 0} ⊆ 𝑉
𝑁𝑠 − 

subset of s-tuples with non-zero frequencies in 𝑋1:𝑇, 
𝟏{𝐶}-indicator function of event 𝐶. 

2) Case of probability dependent components 
First component similarly to case 1), other components 

can be represented in the following form: 

 𝑣𝑠
𝑇(𝐽1:𝑠) = ∑𝟏{

𝑥𝑡+1,𝑖−1 = 𝑗𝑡+1,𝑖−1, … , 𝑥𝑡+1,1 = 𝑗𝑡+1,1,

𝑋𝑇 = 𝐽𝑠 , … , 𝑋𝑡−𝑠−1 = 𝐽1 
}

𝑇−1

𝑡=𝑠

, 

𝑣𝑠+1
𝑇 (𝐽1:𝑠; 1)∑𝟏 {

𝑥𝑡+1,𝑖 = 1, 𝑥𝑡+1,𝑖−1 = 𝑗𝑡+1,𝑖−1, … ,

𝑥𝑡+1,1 = 𝑗𝑡+1,1, 𝑋𝑇 = 𝐽𝑠 , … , 𝑋𝑡−𝑠−1 = 𝐽1 
} .

𝑇

𝑡=𝑠

 

Introduce the following notation: 

�̂�(𝐽1:𝑠) = 𝐹
−1(�̂�(𝐽1:𝑠)) ∈ 𝑅

1, 

𝐷 = ∑ Ψ(𝐽1:𝑠)Ψ
𝑇(𝐽1:𝑠)  ∈  𝑅

𝑚×𝑚

𝐽1:𝑠 ∈𝐽
(𝑠)

, 

Ψ(𝐽1:𝑠) = {𝜓𝑘(𝐽1:𝑠)} ∈  𝑅
𝑚×1,   

𝐸 = ∑ �̂�(𝐽1:𝑠)Ψ(𝐽1:𝑠)  ∈  𝑅
𝑚×1.  

𝐽1:𝑠 ∈𝐽
(𝑠)

 

The idea of FBE method is to find �̂� such that the function 
𝑝(𝐽1:𝑠) is close to  �̂�(𝐽1:𝑠) in 𝑙2-metrics: 

𝑊(𝑏) = ‖�̂�(𝐽1:𝑠) −  ∑𝑏𝑘𝜓𝑘(𝐽1:𝑠)

𝑚

𝑘=1

‖

2

→ min
𝑏
  

Using the gradient: 

∇𝑊(𝑏) = ∑ (−2 �̂�(𝐽1:𝑠)Ψ(𝐽1:𝑠) + 2 Ψ(𝐽1:𝑠)Ψ
𝑇(𝐽1:𝑠)𝐵)

𝐽1:𝑠 ∈𝐽
(𝑠)

 

we get the FBE-estimator: 

�̂� = ( ∑ Ψ(𝐽1:𝑠)Ψ
𝑇(𝐽1:𝑠) 

𝐽1:𝑠 ∈𝐽
(𝑠)

)

−1

∙ 

( ∑ �̂�(𝐽1:𝑠)Ψ(𝐽1:𝑠) 

𝐽1:𝑠 ∈𝐽
(𝑠)

) = 

   𝐷−1𝐸.          (5) 

Theorem 1. If the N-BMC is ergodic and the determinant 
of the matrix D defined by (5) is |D|≠0, then the FBE estimate 
for models (1) and (3) has the form: 

�̂� = (𝑏�̂�) = 𝐷
−1𝐸 

and for T→+∞ is consistent, i.e. converges in probability to 

the true value 𝐵0. 

For the model A the bias and the variance of the estimator 
(5) are: 

𝐸{�̂� − 𝐵0} =  𝐸{�̂�} − 𝐵0
𝑇→∞
→  0, 

𝐸{𝑇(�̂� − 𝐵0)(�̂� − 𝐵0)
′
}
𝑇→∞
→   

𝐷−1Ψ�̅�(∑𝑝)
−1�̅�′Ψ′(𝐷−1 )′, 

∑𝑝 = 𝑑𝑖𝑎𝑔(𝑝𝑖(1 − 𝑝𝑖)) ∈  𝑅2
𝑠×2𝑠 , 

�̅� = (𝐹−1
′
(𝑝𝑖)) ∈  𝑅2

𝑠
. 

For the model B the bias and the variance of the estimator 
(5) are: 

𝐸{�̂� − 𝐵0} =  𝐸{�̂�} − 𝐵0
𝑇→∞
→  0, 

𝐸{𝑇(�̂� − 𝐵0)(�̂� − 𝐵0)
′
}
𝑇→∞
→   

𝐷−1Ψ�̅�(∑𝑝)
−1�̅�′Ψ′(𝐷−1 )′, 

∑𝑝 = 𝑑𝑖𝑎𝑔(𝑝𝑖(1 − 𝑝𝑖)) ∈  𝑅2
𝑠+(𝑖−1)×2𝑠+(𝑖−1) , 
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�̅� = (𝐹−1
′
(𝑝𝑖)) ∈  𝑅2

𝑠+(𝑖−1)
. 

Theorem 2. Under the conditions of Theorem 1 and 

assumptions (2), the FBE estimator �̂� for models (1) and (3) 
has an asymptotically normal distribution: 

√𝑇(�̂� − 𝐵)
𝑇→∞
→  𝒩𝑚(0,∑), 

∑ = 𝐷−1Ψ�̅�∑𝑝�̅�
′Ψ′(𝐷−1 )′. 

IV. STATISTICAL FORECASTING 

The substitution algorithm for optimal forecasting for one 
step is determined by the explicit expression: 

                 �̂�𝑡𝑖 = 𝟏{𝐹(∑ 𝑏�̂�𝜓𝑘(𝑋𝑡−𝑠
𝑡−1)𝑚

𝑘=1 ) −
1

2
> 0}       (6) 

Forecasting of �̂�𝑡+1 𝑖 for the next step is similarly to (6), 
only the fragment 𝑋𝑡−𝑠

𝑡−1 = (𝑋𝑡−1, … , 𝑋𝑡−𝑠)  is replaced by 

(�̂�𝑡 , … , 𝑋𝑡−𝑠+1), etc. 

V. RESULTS OF COMPUTER EXPERIMENTS 

A. Experiments with simulated data 

We estimate the dependence of root mean square error for 
estimation of probability 𝑝0 on number of observations 𝑇, 
number of basis functions 𝑚 and length of history 𝑠: 

∆𝑝0̂(𝑇) =
1

𝑀
∑ (∑ ∑ (𝑝0(𝐽1:𝑠) −𝐽1:𝑠 ∈𝐽(𝑠)

𝑁
𝑖=1

𝑀
𝑣=1

𝐹(∑ �̂�𝑘 ∙ 𝜓𝑘(𝐽1:𝑠)
𝑚
𝑘=1 ))

2

) ,  

where 𝑀 is the number of simulated time series realizations. 

The results are illustrated by Fig. 1.  

B. Experiments with economic data 

We used the exchange rate data 𝑥𝑡 = (𝑥𝑡𝑖)   for two 
currencies (𝑁 = 2) : Russian ruble (𝑖 = 1)and U.S. dollar 
(𝑖 = 2) against the Belarusian ruble from 01/01/2020 to 
01/12/2022 (𝑇=1064). We analyzed increments in exchange 
rates: if the exchange rate increased by compared with 
yesterday, then the value of 𝑥𝑡𝑖 = 1 if the rate fell or remained 
the same, then the value 𝑥𝑡𝑖 = 0 (𝑖 = 1, 2).  

We assessed the probability of correctness of the 1-step 
forecasting algorithm (6): 

                      �̂�𝑖 =
1

𝑇−𝑠−1
∑ 𝟏{𝑥𝑡�̂� = 𝑥𝑡𝑖}.
𝑇
𝑡=𝑠+1                  (7) 

The results are illustrated by Fig. 2. 

C. Experiments with genome data 

We took the complete Drosophila melanogaster genome 
of the length 𝑇=4000. Each nucleotide is represented as 
follows: А - (𝑥𝑡1 = 0, 𝑥𝑡2 = 0), С - (𝑥𝑡1 = 0, 𝑥𝑡2 = 1), G - 
(𝑥𝑡1 = 1, 𝑥𝑡2 = 0), T - (𝑥𝑡1 = 1, 𝑥𝑡2 = 1).  

We assessed the probability of correctness of the 1-step 
forecasting algorithm (6): 

�̂� =
1

𝑇 − 𝑠 − 1
∑ 𝟏{𝑥𝑡1̂ = 𝑥𝑡1, 𝑥𝑡2̂ = 𝑥𝑡2}.

𝑇

𝑡=𝑠+1

 

The results are illustrated by Fig. 3.  

D. Experiments with medical data 

We used a database 𝑥𝑡 = (𝑥𝑡𝑖)  of cases of notifiable 
diseases, and confirmation of pathogens, reported under the 
German ‘Act on the Prevention and Control of Infectious 
Diseases in Man’ (Infektionsschutzgesetz, IfSG) 
SurvStat@RKI 2.0 for two regions of Germany (𝑁 = 2) : 
Berlin (𝑖 = 1)  and Bavaria (𝑖 = 2)  from 2001 to 2020 
(𝑇=1007). We examined the increase in the number of cases: 
if the number of cases increased in compared with yesterday, 
then the value 𝑥𝑡𝑖 = 1, if the number of cases has decreased or 
remained the same, then the value 𝑥𝑡𝑖 = 0 (𝑖 = 1,2).  

We assessed the probability of correctness (7). The results 
are illustrated by Fig. 4.  

 

Fig. 2. Estimation of the probability of correctness of a 1-step forecast of exchange rates. 

 

 

Fig. 1. Depence of root mean square error for estimation of probability 

𝑝0on number of observations 𝑇, number of basis functions 𝑚 and length 

of history 𝑠. 

 

 

 
Fig. 1. Depence of root mean square error for estimation of probability 

𝑝0on number of observations 𝑇, number of basis functions 𝑚 and 

length of history 𝑠. 
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VI. CONCLUSION 

The following results are obtained in the paper: 

1) three parsimonious models of multivariate binary time 

series are proposed; 

2) consistent asymptotically normal statistical estimators 

of the parameters for the proposed models are constructed; 

3) asymptotic bias and variance for the parameters 

estimators are given; 

4) algorithms of computer data analysis and experiments 

on simulated and real statistical discrete-valued data are 

presented. 
The results of the paper can be used to solve the applied 

problems of statistical analysis of discrete-valued time series 
in economics, genetics and other fields. 
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Fig.3. Estimation of the probability of correctness of a 1-step forecast of genetic sequence 

 

Fig.4. Estimation of the probability of correctness of a 1-step forecast of number of cases 


