Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306255
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShibalko, Siarhei
dc.contributor.authorKharin, Yuriy
dc.date.accessioned2023-12-12T12:42:18Z-
dc.date.available2023-12-12T12:42:18Z-
dc.date.issued2023
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 296-299.
dc.identifier.isbn978-985-881-522-6
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306255-
dc.description.abstractThis paper is devoted to parsimonious models of multivariate binary time series. Consistent asymptotically normal statistical estimators for the parameters of proposed parsimonious models are constructed. Algorithms for statistical estimation of model parameters and forecasting of future states of time series are presented. Results of computer experiments on simulated and real statistical discrete-valued data are given
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.titleParsimonious models of multivariate binary time series: statistical estimation and forecasting
dc.typeconference paper
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
296-299.pdf440,26 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.