Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/338877| Title: | Current scientific research on Electrostatic accelerator EG-5 in JINR |
| Authors: | Doroshkevich, A. S. Chavez Lomeli, E. R. Pedrero González, E. Mezentseva, Zh. V. Oksengendler, B. L. Zelenyak, T. Yu. Tatarinova, A. A. Tuan, P. L. Teofilović, V. Ivanovich, Z. Mita, C. Mardare, D. M. Cornei, N. Mirzaev, M. N. Appazov, N. O. Kirillov, A. K. Chepurchenko, I. A. Kruglyak, A. I. Aleksiayenak, Yu. V. Ksenevich, V. K. Maletskii, A. V. Altynbasova, A. Zh. Perez Moreno, A. C. Isayev, R. Sh. Ibrahim, M. Fortuné Fábregas, S. M. Ledo Pereda, L. M. Simonenko, I. O. Kinev, V. A. Tameev, A. R. |
| Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
| Issue Date: | 2025 |
| Publisher: | EDP Sciences |
| Citation: | EPJ Web of Conferences. – 2025. – Vol. 333. – P. 03002 (1–15) |
| Abstract: | The electrostatic accelerator (ESA) EG-5 has been operating stationary in the Nuclear Physics Department of the Nuclear Physics Department of JINR (Dubna) since 1965. Along with an experimental nuclear reactor and a pulsed accelerator IREN, ESA EG-5 occupies its own unique niche as part of a complex of nuclear physics installations. The beams of high-energy particles obtained using EG-5 have the highest energy stability (± 15 keV per 2 MeV), due to which it is possible to conduct unique studies of the elemental composition of solids, including depth profiling, conducting studies of fast neutron nuclear reactions, etc. ESA EG-5 is a universal research device that allows conducting both studies of the elemental composition and physical, chemical and biological modification of objects of inanimate and living nature, respectively. EG-5 electrostatic accelerator at FLNP JINR, used to produce intense fluxes of fast particles (H+, He+, D+) and neutrons; for elemental analysis of surface layers of various objects using beams of α-particles, using non-destructive techniques RBS, ERD and PIXE; for implantation of ions into the surface layers of various materials; to study the radiation resistance of materials. Unique opportunities will appear after the implementation of a microbeam spectrometer at the EG-5 accelerator in period since 2025. |
| URI: | https://elib.bsu.by/handle/123456789/338877 |
| ISSN: | 2100-014X |
| DOI: | 10.1051/epjconf/202533303002 |
| Sponsorship: | Serbia-JINR cooperation Program 2022 – 2025 (responsible from JINR A.S. Doroshkevich), Belarus-JINR cooperation Projects (responsible from JINR A.S. Doroshkevich); FLNP JINR Them 03-4-1146-1-2014/2028; T.Yu. Zelenyak, V.A. Kinev, I.O. Simonenko and A.R. Tameev acknowledge the financial support from the Russian Science Foundation (Project No. 23-19-00884, the Development of perovskite materials for radiation detection for biomedical applications); Acknowledgements, to Dr. Otilia Ana Culicov, for the support of the collaboration between Cuban researchers and the EG-5/FLNP/JINR researchers since 2021. |
| Licence: | info:eu-repo/semantics/openAccess |
| Appears in Collections: | Кафедра физики полупроводников и наноэлектроники (статьи) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| EPJWC03002.pdf | 1,05 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

