Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/288837
Title: | THE SMALL PARAMETER METHOD IN THE OPTIMISATION OF A QUASI-LINEAR DYNAMICAL SYSTEM PROBLEM |
Authors: | Kalinin, A.I. Lavreinovich, L.I. Prudnikova, D.Y. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Автоматика. Вычислительная техника |
Issue Date: | 2022 |
Publisher: | The Belarusian State University |
Citation: | Z Beloruss Gos Univ , Mat Inform 2022;2022(2):23-33 |
Abstract: | We consider an optimisation problem for the transient process in a quasi-linear dynamical system (contains a small parameter at non-linearities) with a performance index that is a linear combination of energy costs and the duration of the process. An algorithm for constructing asymptotic approximations of a given order to the solution of this problem is proposed. The algorithm is based on the asymptotic decomposition by integer powers of a small parameter of the initial values of adjoint variables and the duration of the process that are finite-dimensional elements, according to which the solution of the problem is easily restored. The computational procedure of the algorithm includes solving the problem of optimising the transient process in a linear dynamical system, integrating systems of linear differential equations, and finding the roots of non-degenerate linear algebraic systems. We also show how the constructed asymptotic approximations can be used to construct optimal control in the problem under consideration for a given value of a small parameter. |
URI: | https://elib.bsu.by/handle/123456789/288837 |
DOI: | 10.33581/2520-6508-2022-2-23-33 |
Scopus: | 85136929519 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Статьи факультета прикладной математики и информатики |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
4694-Текст статьи-45264-1-10-20220819.pdf | 1,08 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.