Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/288837
Title: THE SMALL PARAMETER METHOD IN THE OPTIMISATION OF A QUASI-LINEAR DYNAMICAL SYSTEM PROBLEM
Authors: Kalinin, A.I.
Lavreinovich, L.I.
Prudnikova, D.Y.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Автоматика. Вычислительная техника
Issue Date: 2022
Publisher: The Belarusian State University
Citation: Z Beloruss Gos Univ , Mat Inform 2022;2022(2):23-33
Abstract: We consider an optimisation problem for the transient process in a quasi-linear dynamical system (contains a small parameter at non-linearities) with a performance index that is a linear combination of energy costs and the duration of the process. An algorithm for constructing asymptotic approximations of a given order to the solution of this problem is proposed. The algorithm is based on the asymptotic decomposition by integer powers of a small parameter of the initial values of adjoint variables and the duration of the process that are finite-dimensional elements, according to which the solution of the problem is easily restored. The computational procedure of the algorithm includes solving the problem of optimising the transient process in a linear dynamical system, integrating systems of linear differential equations, and finding the roots of non-degenerate linear algebraic systems. We also show how the constructed asymptotic approximations can be used to construct optimal control in the problem under consideration for a given value of a small parameter.
URI: https://elib.bsu.by/handle/123456789/288837
DOI: 10.33581/2520-6508-2022-2-23-33
Scopus: 85136929519
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Статьи факультета прикладной математики и информатики

Files in This Item:
File Description SizeFormat 
4694-Текст статьи-45264-1-10-20220819.pdf1,08 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.