Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/338813
Заглавие документа: Clustering-based methodology for comparing multi-characteristic epidemiological dynamics with application to COVID-19 epidemiology in Europe
Авторы: Kirpich, Alexander
Shishkin, Aleksandr
Lhewa, Pema
Adeniyi, Ezekiel
Norris, Michael
Chowell, Gerardo
Gankin, Yuriy
Skums, Pavel
Perez Tchernov, Alexander
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2025
Издатель: The Royal Society 
Библиографическое описание источника: Royal Society Open Science. 2025 Sep 1;12(9):250440–0.
Аннотация: This study utilized a clustering‑based approach to investigate whether countries with similar COVID‑19 dynamics also share similar public health and selected sociodemographic factors. The pairwise distances between 42 European countries for six characteristics were calculated, including COVID‑19 inci‑ dence, mortality, vaccination, SARS‑CoV‑2 genetic diversity, cross‑country mobility and sociodemographic data. Hierarchi‑ cal clustering trees were constructed, and the strengths of asso‑ ciation between the pairs of trees were quantified using cophe‑ netic correlation and Baker’s Gamma correlation measures. The analysis revealed distinct patterns of agreement between clusterings. Vaccination clusterings showed moderate agree‑ ment with incidence but no strong agreement with mortality. Mortality‑based clustering only agreed with population health clustering. Incidence‑based clustering aligned with population health, genetic diversity and selected sociodemographic pa‑ rameters. Genetic diversity clusterings agreed with mobility and related sociodemographic characteristics. The utility of the cluster‑based methods for the time‑series is illustrated, and these findings provide insights into the underlying mecha‑ nisms driving epidemiological disparities across localities and subpopulations.
URI документа: https://elib.bsu.by/handle/123456789/338813
DOI документа: 10.1098/rsos.250440
Scopus идентификатор документа: 105016890491
Финансовая поддержка: GISAID acknowledgement list can be found at the tool repository https://github.com/akirpich‑ ap/COVID‑19‑Europe (also accessible at https://doi.org/10.55876/gis8.230407vq).
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:Кафедра веб-технологий и компьютерного моделирования (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
8.pdf1,29 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.