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This study utilized a clustering-based approach to investigate
whether countries with similar COVID-19 dynamics also share
similar public health and selected sociodemographic factors.
The pairwise distances between 42 European countries for
six characteristics were calculated, including COVID-19 inci-
dence, mortality, vaccination, SARS-CoV-2 genetic diversity,
cross-country mobility and sociodemographic data. Hierarchi-
cal clustering trees were constructed, and the strengths of asso-
ciation between the pairs of trees were quantified using cophe-
netic correlation and Baker's Gamma correlation measures.
The analysis revealed distinct patterns of agreement between
clusterings. Vaccination clusterings showed moderate agree-
ment with incidence but no strong agreement with mortality.
Mortality-based clustering only agreed with population health
clustering. Incidence-based clustering aligned with population
health, genetic diversity and selected sociodemographic pa-
rameters. Genetic diversity clusterings agreed with mobility
and related sociodemographic characteristics. The utility of the
cluster-based methods for the time-series is illustrated, and
these findings provide insights into the underlying mecha-
nisms driving epidemiological disparities across localities and
subpopulations.
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1. Introduction

The COVID-19 pandemic represents an unprecedented public health crisis, which rapidly spread to the
majority of countries worldwide since its first reported case in Wuhan, China [1-5]. Studies have shown
considerable variations in COVID-19 incidence, mortality and vaccination coverage across different
regions and even within countries in the same region [6-12].

These variations can be attributed to heterogeneous sociodemographic, economic, political and epi-
demiological factors [10,13]. The list of potential contributing factors is extensive and may include
population mobility [14,15], population density [16,17], age structure and life expectancy [18-21], preva-
lence of cardiovascular diseases, diabetes and obesity [20,21], public health infrastructure [22], gross
domestic product (GDP) per capita [23,24], human development index (HDI) [25], level of poverty [26],
as well as history of spread of SARS-CoV-2 Variants of Concern (VOC) [27-30]. These factors not only
directly impacted the spread, morbidity and mortality of the disease but also indirectly influenced the
implementation and effectiveness of non-pharmaceutical interventions (NPIs) and vaccination strategies
[31-33].

Although there is a vast amount of research on the factors contributing to COVID-19 dynamics, the
exact nature of these disparities is not fully understood. Therefore, comprehending the potential root
causes of these disparities is vital. This understanding is key to drawing lessons from the COVID-19
pandemic and effectively handling similar health crises in the future.

Simply put, the key question is this: Why did some countries show similar patterns in their COVID-19
epidemiological dynamics, while others differed significantly? A particular aspect of interest is the study
of ‘outlier countries’, i.e. those with notably unique public health strategies during the pandemic, such
as Sweden and Belarus with their limited NPI policies [34-38] or Italy [39-41], Belarus [37,38] and Russia
[42] who reported atypical trends in COVID-19 incidence and mortality. It is crucial to quantitatively
assess whether the epidemiological dynamics in these countries significantly deviated from others and,
if so, to what extent these differences were due to factors beyond their specific responses to COVID-19.

The study of these questions is distinct from standard association and causation studies. The aim here
is not a comparison of incidence and mortality between countries using some metric, but the compari-
son of parameters based on groupings of the studied countries with respect to these parameters. In other
words, the major question of this study is not, for instance, ‘Is it the case that a country X and a country
Y have similar dynamics of mortality’, but rather ‘Is it generally the case that the countries that express
similar dynamics of mortality have also similar dynamics of incidence?” or ‘Is it generally true that the
countries that express similar dynamics of mortality have similar demographic structure?” Ultimately,
the answers to these questions are expected to improve the understanding of the actual trends in in-
cidence and mortality within the given countries. The trends study challenge arises from the need to
compare the entire time-series data of incidence, mortality and vaccination rates across countries. These
comparisons ideally must consider the entire time-series data with dependent records over the entire stud-
ied period, rendering regression methods that assume independence between records unsuitable for this
analysis. Consequently, straightforward correlation and regression analyses may not be sufficient for
studying the similarities in dynamics.

The direct comparison of times series data is widely used for studies of viral epidemics [43—46]. How-
ever, COVID-19 time-series data tend to be highly volatile due to multiple reasons, such as variations
in public health policies or under-reporting, which vary in time and regionally [47]. To address this in-
herent variability, several alternative approaches have been proposed. One set of approaches is based on
smoothing the time-series data [48], as well as reducing the complete time series to some subset of points,
such as doubling time points [49] or turning points [50,51] (e.g. maximums or minimums of epidemic
waves). Similar approaches include autoregressive approximation [52] and latent growth model [20].
Other approaches substitute the comparison of entire time series by the comparison of their summary
statistics for the entire time period or during particular pandemic waves [52-54].

The above-mentioned techniques help identify general patterns from time-series data and simplify
comparisons. However, excessive smoothing and insufficient subsampling could overlook significant
region-specific components embedded within specific epidemic sub-waves. Thus, this study utilizes a
method of direct pairwise comparison of the complete time-series data from different countries using
suitable metrics. These comparisons yield pseudo-distances between the time-series data, which are then
utilized as indicators of the similarity between the corresponding countries.

In this paper, a new methodology is introduced which is centred on clustering-based comparative
analysis. The goal is to explore potential connections between country similarities in COVID-19 dynamics
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and similarities by socioeconomic, demographic, geographic and virological factors. European countries
were specifically chosen for this study due to the rich diversity, availability and quality of data.

The proposed approach based on clustering has also been established, and a range of methods has
already been employed in conducted studies to cluster countries based on COVID-19 data [48,53,55—
58]. This manuscript is a continuation and expansion of the clustering approach and the utilization of
comparisons between clusterings for different characteristics.

More specifically, the approach proposed in this work is initiated by identifying multiple categories of
country characteristics, based on the aforementioned factors or country-specific time series. For each cate-
gory, a hierarchical clustering tree using specially defined pseudo-distances is generated which measures
differences between these characteristics across countries. Then the statistical measures like cophenetic
correlation and Baker’s Gamma are utilized for a comparative analysis of these clustering trees within
each characteristic. While cophenetic and Baker Gamma measures are not correlations in the classical def-
inition, they are corresponding analogues that characterize the similar relationships between the trees
and are therefore also referred to as correlations in the literature. If two characteristics exhibit a high de-
gree of agreement in their clustering patterns, they are considered linked. The use of clustering methods
allows to intuitively visualize the groups of countries and see agreements and disagreements between
them within the given feature. The hierarchical clustering method was chosen for the analysis since it
does not require pre-specifying the number of clusters, allowing potential clusters and similarity patterns
to be identified directly from the dendrograms. Furthermore, dendrograms offer intuitive visualizations
that are easy to interpret.

It is important to emphasize that the novelty of the proposed approach also lies in its departure
from relying on a single clustering solution or a pre-defined number of clusters. Instead, the focus is
on comparing multiple clustering outcomes derived from diverse data sources, including the integra-
tion of molecular data with classical epidemiological and policy-related data from European countries,
which is an additional innovative aspect of the analysis. Also, the proposed method assesses all available
variable pairs and does not inherently distinguish between primary variables of interest (e.g. incidence
and mortality, in the presented work) and auxiliary explanatory variables (e.g. vaccination rates, mobil-
ity or sociodemographic factors). As a result, all variables included in the study are evaluated pairwise,
allowing for a direct assessment of how auxiliary variables may influence one another as well as the
primary outcomes of interest. Ultimately, this methodology enables (i) the identification of clusters for a
given characteristic, which are identified using the most appropriate ‘distance’ metric for that character-
istic and (ii) the comparison of those identified clusterings with the corresponding clusterings produced
for COVID-19 incidence, mortality and vaccination rates. This insight is instrumental in uncovering the
key factors contributing to the variations in COVID-19 dynamics between different European countries.

2. Methods

2.1. Data collection and prepossessing

This study focused on factors that have already been documented to be associated with the spread of
COVID-19 and for which data were available for analysis. Several categories of data were collected,
preprocessed and analysed:

(1) COVID-19 surveillance data that include incidence, mortality and vaccination coverage over time.

(2) Full-length SARS-CoV-2 genomes sampled, sequenced and assembled over time.

(3) Pre-pandemic mobility data.

(4) Historic population health data, including life expectancy, cardiovascular disease death rates,
diabetes and adult obesity prevalence.

(5) Historic sociodemographic characteristics, including fertility rate, median age, population density,
GDP per capita, HDI, hospital beds per 1000 individuals and the proportion of individuals living
in extreme poverty.

This study focuses on the time period from 22 January 2020 (earliest date available) to 15 February 2022,
i.e. before the Russian invasion of Ukraine, which had a severe impact on the epidemiological and data
reporting dynamics in Eastern Europe due to massive population movement, disruption of public health
systems and COVID-19 surveillance [59-62], thus hampering unbiased comparison of epidemiological
and public health data between Eastern European countries and the rest of the continent. Furthermore,
so-called micro-states of Andorra, Holy See (Vatican), Liechtenstein, Monaco and San Marino, which are
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characterized by unusually high testing rates per capita, lack of clearly defined borders with their neigh-
bours, and non-typical economics and population structures were excluded from the analysis to avoid
skewed results.

COVID-19 incidence and mortality time series were obtained using the data from the COVID-19 Data
Repository by the Center for Systems Science and Engineering at Johns Hopkins University [63]. Vacci-
nation data from 21 December 2020 (earliest available) to 15 February 2022 were downloaded from the
Bloomberg Vaccine Tracker [64,65]. Cumulative counts were transformed into daily counts, the discrep-
ancies in reporting were addressed by interpolating missing values and, subsequently, by aggregating
the data into weekly counts to mitigate reporting effects, such as weekends and holidays. The obtained
weekly time series were standardized to the values per population of 100 000, with country populations
reported by the UN for the beginning of 2020 [66].

The pre-pandemic inter-country travel data for 2011-2016 (latest processed and available for pre-
pandemic period) were obtained from the European Commission Knowledge Center on Migration and
Demography [67,68]. The available data did not include Serbia and Montenegro. Consequently, compar-
isons incorporating mobility data were conducted for 42 countries instead of the original 44 countries.
The population health and sociodemographic characteristics of the countries were downloaded from the
public repository ourworldindata.org [69], which is a project of the Global Change Data Lab [70], a
registered charity in England and Wales.

Finally, genomic data used in this study were obtained from the GISAID repository [71]. This study
focuses on comparing time series reflecting distributions of prevalences of major SARS-CoV-2 lineages
in analysed European countries. In total, 7,694,400 SARS-CoV-2 sequences sampled over the analysed
period were considered. Each sequence’s sampling time, country of sampling and lineage according to
the PANGO classification [72] were directly extracted from the GISAID metadata.

2.2. Data analysis

The analysis was performed in the following three steps, which are outlined below:

In the first step, the computations of pairwise distances or pseudo-distances between countries for
different data types using appropriate metrics (details in the next subsection). As a result, a symmetric
44 x 44 distance matrix was obtained for every data category (42 x 42 distance matrix for mobility data).
Subsequently, each matrix was standardized by normalizing it by its maximum element.

In the second step, the incidence and mortality distance matrices, which served as the primary data
of interest, were visualized using the multidimensional scaling (MDS) method [73-75] as a preliminary
analysis to generate hypotheses regarding potential similarities and dissimilarities in terms of the im-
pact of COVID-19 reported incidence and mortality. The primary goal of the MDS method is to perform
exploratory analysis, accompanied by visualizations, to generate hypotheses about potential clustering
of countries based on reported incidence and mortality. The temporal dimension is incorporated into
the distances used in the MDS through the corresponding distance measures for incidence and mor-
tality, as described in the next subsection. The MDS is applied solely to incidence and mortality data,
serving as a basis for generating hypotheses to be examined using auxiliary data. This approach, how-
ever, subsequently allows for generating hypotheses and further looking into additional characteristics
to explore similarities within clusters. Subsequently, the matrices for each data category and distance
metric were used to perform the hierarchical clustering analysis [76-78] and to produce the hierarchical
clustering trees. The hierarchical clusterings were performed using the ‘average’ clustering rule [79,80].
Hierarchical clustering was performed separately for each data type to produce a corresponding com-
plete tree that included all countries in a single hierarchy. This approach enabled direct comparison of
the resulting data-specific trees, allowing for the identification of similarities between the hierarchies us-
ing appropriate methods. Unlike other methods, hierarchical clustering does not require pre-specifying
the number of clusters; instead, it derives the clustering structure during the algorithm’s execution,
based on the specified clustering rule. Among different agglomeration methods for hierarchical clus-
tering tree construction, average linkage was selected based on its ability to better preserve the original
pairwise dissimilarities among observations, as indicated by the correlation between distances in the re-
sulting tree and the original input distances (median and mean correlation =0.73 and 0.75 across datasets,
respectively).

In the third step, quantification of agreement between hierarchical clusterings trees produced at a
previous stage by different categories of data was performed. It was done by comparing hierarchical
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clustering trees using several metrics, including cophenetic correlation [81,82] and Baker’s Gamma cor-
relation [83,84]. The two separate comparison methods (cophenetic and Baker) were used since they
are based on different analysis approaches, allowing for the evaluation of the potential robustness of
the results. The summaries of these comparisons were visualized using correlation plots [85] and cor-
responding graphs [86]. Here, it should be noted that both cophenetic correlation and Baker's Gamma
statistics assess only the structural concordance between the available dendrograms produced earlier,
whereas the quality of the clustering and the dendrogram structure itself are determined solely by the
hierarchical clustering algorithm applied in the preceding step.

2.2.1.2.2.1. Distance measures for different data types

The distance measures between countries for the first step of the analysis were selected based on the
data category. For COVID-19 incidence, mortality and vaccinations data, the differences between pairs
of countries were computed as the differences between the corresponding time series. Two distinct met-
rics were used to compute such differences. The first metric was based on the cross-correlation between
the time series. Specifically, the cross-correlation distance (CCD) for series X = X(t) and Y = Y(t) was
computed as:

CCD(X, ) =1~ max [CC(X, Y. D],
(S

where CC(X, Y, 1) is the value of the cross-correlation for series X and Y computed for a given value of
the lag [. The maximum cross-correlation value was taken across the set of lags L [87]. The CCD(X, Y)
formula ensured that countries with the largest cross-correlation values resulted in the smallest values
of CCD(X, Y). The second metric was based on the dynamic time wrapping (DTW) algorithm. DTW is
a technique used to compare pairs of time series in terms of the distance between them while account-
ing for their temporal alignment. Specifically, the DTW algorithm identifies the optimal match between
two time series in terms of the Euclidean distance based on a defined set of constraints. The correspond-
ing distance between the series is determined from this match [88-90]. In particular, the same CCD and
DTW distance measures used to compute distances for incidence and mortality separately between coun-
tries were also used to compute the distances between incidence and mortality within every country. The
two methods (CCD and DTW) were considered for comparison purposes since the first method uses
standardized correlation values and can be used for series with potentially different scales, while the
second method directly relies on the fact that two series should be on the same scale.

The pre-pandemic mobility data were computed as an average mobility during the years 2011-2016.
For each pair of countries, the measure of mobility between them was calculated as a total travel count
between the countries (in both directions) normalized by their combined population size. The mobil-
ity, a similarity measure, was transformed to the distance measure using an exponential transformation.
Specifically, the formula used for the mobility pseudo-distance was

d(rjp) =exp |~ = Tuin)/B ]

where 7;; represents the standardized travel counts between countries i and j, 7, is the smallest
standardized travel counts across all pairs of countries and g is the mean of all pairwise distances.
Additionally, the diagonal values of the mobility pseudo-distance matrix were set to zero.

The remaining sociodemographic and public health data were combined in three different groups.
The population health characteristics included life expectancy, cardiovascular disease death rate, diabetes
prevalence and share of obese adults. The sociodemographic characteristics included total fertility rate,
median age, population density, GDP per capita, HDI, number of hospital beds per 1000 individuals in
population and share (proportion) of extreme poverty population. The third group was formed as the
combination of the first two groups and included population health and sociodemographic characteristics.
The values for each considered characteristic were standardized by subtracting the mean of that char-
acteristic across all countries and dividing by the corresponding standard deviation. This resulted in
standardized z-scores for each characteristic across countries. As a result, a vector of z-scores was pro-
duced for each country based on those characteristics. Those vectors were interpreted as coordinates of
each country in multidimensional space and used to compute the Euclidean distance between each pair
of countries.

To calculate distances between time series representing distributions of prevalences of major SARS-
CoV-2 lineages in analysed European countries, the sequences sampled between 1 April 2020 and 24
February 2022 were considered. The time period was split into T = 23 intervals of uniform lengths of 30
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days. For each country ¢, a time series p° = (p{, ..., p';) was considered, where pi = (p;(1), ..., p;(6)) is the
estimated frequency distribution of six SARS-CoV-2 genomic variant options sampled over the time in-
terval t. The variants in question were five VOCs designated by WHO (Alpha, Beta, Gamma, Delta and
Omicron), and all genomes not classified as VOCs. The strain distribution distance SD(c;, cj) between the

series p% and p“ was calculated as the squared differences between distributions p:’ and p, averaged
over time intervals:

T 6
SD( )= 7 3, 2 @) — p @)
t=1v=1
The analysis was performed in R [91] and in MATLAB [92]. In particular, the comparison of trees was per-
formed using methods from R package dendextended [93,94]. The entire analysis source code in R and in
MATLAB has also been made publicly available on GitHub [95].

The validity and stability of the findings were assessed using a leave-five-countries-out cross-
validation approach on a dataset comprising 42 countries. The analysis was repeated 1000 times, each
using a randomly selected subset of 37 countries. For each iteration, cophenetic and Baker's Gamma
estimates were calculated. Median values across the 1000 runs, along with 95% confidence intervals de-
fined by the 2.5th and 97.5th percentiles, were reported. This cross-validation method also evaluated the
robustness of the results in the presence of potential outliers.

Additionally, the sensitivity of the findings to the length of the aggregation interval was evaluated.
While the original analysis was conducted using a 1-week interval, the same procedures were repeated
using new aggregation intervals of 2 weeks (a twofold increase in length) and 4 weeks (a fourfold increase
in length). The results from these aggregations were then compared.

3. Results

3.1. Raw data summaries

The standardized weekly raw data summaries for incidence and mortality confirm the high heterogene-
ity between countries both in terms of the scale of detected infections and death per capita and the timings
of the peaks. Those visual summaries are provided for references in electronic supplementary material,
figures S8 and S9.

The more informative summaries of the relationships between incidence and mortality within each
country for the entire time series have been computed using CCD and DTW measures. Those CCD and
DTW distances between time series were used to compare the continuously evolving dynamics of the
relationship between incidence and mortality for the entire studied period. In figure 1, the comparisons
utilizing the CCD metric are presented on a standardized 0-1000 scale; see electronic supplementary
material, figure S10 for similar plots for the DTW metric. In the above-mentioned figures, the distances
between incidence and mortality are provided in two ways for convenience purposes, i.e. rounded to
integer values summarized on the map (panel A) and by the distances between the corresponding time
series (panel B).

In summary, figure 1 and electronic supplementary material, figure S10 suggest that, although there is
a certain correspondence between the overall relative mortality and the distances between incidence and
mortality time series, these measures reflect different underlying phenomena. For instance, the coun-
tries that exhibit the highest relative mortality, such as Bosnia and Herzegovina, Bulgaria, and North
Macedonia, closely align with those that have the smallest incidence/mortality CCD distance, specifi-
cally Bosnia and Herzegovina, Azerbaijan and North Macedonia. Yet, the trios of countries exhibiting
the most negligible relative mortality and most significant CCD distances, such as Iceland, Norway and
Denmark versus Belgium, Netherlands and the United Kingdom, respectively, are markedly distinct. In
particular, the ranking of countries based on the distance between their incidence and mortality (as seen
in figure 1) aligns with the ranking by the extent of under-reporting of COVID-19 deaths [96].

3.2. Multidimensional scaling

The MDS provides the preliminary visualizations of dissimilarities between the countries based on the
analysed metrics and pseudometrics. In particular, those visualizations can help to identify potential
outliers. The visual summaries for CCD and DTW distances between incidence and mortality series
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A Cross-Correlation Distance for Comparisons of COVID-19 Mortality vs Incidence
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Figure 1. CCD distances standardized on 0—1000 scale between COVID-19 incidence and mortality time series for each of the 44 coun-
tries with (A) rounded to integer values summarized on the map and (B) exact values sorted alphabetically. The shapefile used to produce
panel (A) has been downloaded from Esri’s hub.arcgis.com and processed in Esri ArcMap v10.7 and Inkscape v0.92.

are presented in figure 2 and electronic supplementary material, figure S11, respectively. Based on the
CCD method for incidence, Armenia, Ukraine, Azerbaijan, Bosnia and Herzegovina, North Macedonia,
Turkey, Belarus, Slovakia, Russia and Iceland emerge as the most ‘distant’ from the others, as demon-
strated in figure 2A. Most of these countries are in Eastern and Southern Europe, with half belonging to
the former Soviet region and 30% to the Balkan region, including Turkey. These associations are statisti-
cally significant, with p = 0.018 (hypergeometric test [97]) for random sampling of 5 out of 9 post-Soviet
countries among 10 outliers and p =0.011 (hypergeometric test) for random sampling of 9 out of 24

Eastern European countries among 10 outliers.
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Multidimensional Scaling for Incidence
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Multidimensional Scaling for Mortality
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Figure 2. Multidimensional scaling of the CCD distances for (A) incidence and (B) mortality time series of 44 countries.

Various factors may explain their ‘outlier’ status in terms of incidence dynamics, such as their unique
implementation of NPIs, the population’s adherence to these measures or the potential under-reporting
of COVID-19 cases [37,38,98-102]. An exception within this list is Iceland, which does not fall within the
previously mentioned regions. However, it may be seen as the exception that validates the rule, given
its unique COVID-19 experience, largely due to its geographical isolation and extensive range of public
health measures [103-105]. In contrast, Western and Northern European countries cluster more closely,
indicating more uniform incidence dynamics.

For mortality (figure 2B), Belarus, Russia, Georgia (former Soviet Union) and Iceland, Finland, Nor-
way and Denmark [106] (Nordic countries) appear to be the “outliers’. The appearance of 4 out of 5 Nordic
countries among 7 outliers is statistically significant (p = 0.001, hypergeometric test). In comparison, for
the selection of 3 out of 9 post-Soviet countries among 7 outliers, the p-value was estimated to be 0.11. Itis
worth noting that the only Nordic country missing from this list is Sweden, which is notable for limited
NPI policy during the COVID-19 pandemic [34-36], with indications of high mortality rates. Regarding
mortality dynamics, Sweden aligns more closely with Western European countries than its sociocultural
and geographic region. Belarus, another European nation that adopted a similar NPI policy [37,38], in-
deed can be considered as an ‘outlier’, although not by itself but as a part of a small regional cluster.
On the other hand, Denmark, whose NPI policies were highlighted in some studies for effectively min-
imizing both economic costs and the number of deaths [106], also stands out as a mortality outlier. The
results were comparable between CCD and DTW methods with some differences.

3.3. Comparisons of clusterings for different data types and sources

Hierarchical clustering trees were constructed and analysed to examine the associations between var-
ious epidemiological and sociodemographic factors. These trees were built upon distances or pseudo-
distances between analysed country characteristics. For example, figure 3 and electronic supplementary
material, figure S12 illustrate the trees for CCD and DTW distances between the incidence and mortal-
ity time series for 44 countries. Those trees complement the knowledge gained from MDS in figure 2
by providing precise country clustering based on the tree structure, as opposed to the two-dimensional
preliminary visualization of incidence and mortality proximities which MDS utilizes. In the same way,
the pre-pandemic average mobility data trees are depicted in electronic Supplementary material, figure
S13 for 42 countries (excluding Serbia and Montenegro). Additionally, the trees for population health
characteristics, sociodemographic characteristics, the full set of available characteristics and strain dis-
tribution distances can be found in electronic supplementary material, Figure S14-S17. Lastly, the trees
related to vaccinations are reported in electronic Supplementary material, figures S18 and S19.
Generally, the country clusters based on incidence appear intuitive, as countries that share geographi-
cal, economic, cultural or mobility-related ties often group together. This can be seen in Luxembourg and
Switzerland, Spain and Portugal, Czechia and Slovakia, Cyprus and Greece, Estonia, Latvia and Lithua-
nia. However, such correlations are not universal, and geographical or cultural groupings do not fully
account for the diverse epidemiological dynamics. Notably, clusters based on mortality, vaccination and
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Figure 3. Hierarchical clustering tree for the CCD distance between the 44 countries based on (A) incidence and (B) mortality time series.

strain distribution are markedly diverse and deviate significantly from those based on incidence, while
the resulting groupings appear less straightforward. Furthermore, the clustering of time series using
CCD and DTW methods does not agree perfectly, which may be attributed to the fact that the CCD and
DTW metrics rely on different underlying methods, which utilize either cross-correlations or temporal
alignment to minimize the Euclidean distance between the time series using a set of constraints.

Pairwise measures of agreement can be visually compared in a single figure. Specifically, colour codes
based on the values of the measures for all pairs of characteristics can be utilized for this purpose. More
specifically, figure 4 and electronic supplementary material, figure S20 summarize the quantitative mea-
sures of agreement between hierarchical clustering trees for various characteristics, using CCD and DTW
metrics, respectively, for time-series comparison. The comparison measures employed here are cophe-
netic correlation and Baker’s Gamma, both correlation-based and ranging from -1 to 1, with higher values
signifying better agreement. The agreements between the cophenetic correlations and the corresponding
Baker’s Gamma statistics values have been evaluated as single-valued Pearson correlation estimates. The
estimates were computed between the two tables of values, pairwise for each cell, with Pearson correla-
tion estimates of 0.97 (95% CI : [0.96; 0.98]) for CCD and 0.99 (95% CI : [0.98;0.99]) for DTW, respectively.
The precise differences for each pair of trees between the cophenetic correlations and the corresponding
Baker’s Gamma statistics have also been summarized in electronic supplementary material, table S5 and
figure 521 for CCD and in electronic supplementary material, table S6 and figure 523 for DTW statistics,
respectively. The cophenetic correlation and Baker’s Gamma methods agree fairly well, with some mi-
nor discrepancies, most pronounced for Mobility Data Average for 2011-2016. Such minor differences in
results have been expected, since cophenetic correlation relies on the standard correlation of the cophe-
netic distances obtained from each tree, while Baker's Gamma statistics utilize trees paired in multiple
ways and evaluate clusters.

The summaries for both measures are provided to ascertain the robustness of the results. The trees
under comparison were developed for 42 countries, excluding Serbia and Montenegro due to the un-
availability of their mobility data. For the alternative and potentially more focused visualization of the
highest correlation values and interconnectedness between different data sources, the deduced associa-
tions between characteristics are also visualized using the corresponding graphs. In particular, figure 4
for CCD and electronic supplementary material, figure 520 for DTW serve as summaries of the entire set
of characteristics; they present all pairwise statistics and the relationships, which can be either positive or
negative. Moreover, each row of figure 4 for CCD and electronic supplementary material, figure S22 for
DTW emphasizes how the corresponding characteristic is related to all other characteristics, providing a
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Figure 4. The pairwise summaries between the hierarchical clustering trees for different data sources using the CCD metric for time-
series comparison. (A) Cophenetic correlations. (B) Baker's Gamma statistics.

A Graph of Links for p > 0.25 (Cophenetic) B Graph of Links for p>0.25 (Baker)

Figure 5. The graph of associations between country characteristics. The vertices represent characteristics and the edges correspond to
strong correlations (exceeding the threshold of 0.25). The width of an edge represents the corresponding correlation value. The graph
layouts were obtained using Kamada—Kawai algorithm. The short names of the graph vertices have the following meaning: GEN - COVID
— 19 Genetic Diversity (Strain Distribution Distance), INC- COVID — 19 Incidence (Cross-Correlation Distance), MOB - mobility Data, MOR
- COVID — 19 Mortality (Cross-Correlation Distance), PH - population health data, SD - sociodemographic data, PH-SD - population health
and sociodemographic data, VAC - COVID — 19 Vaccinations (Cross-Correlation Distance)

general idea of the agreement for a given characteristic. In contrast, figure 5 for CCD and electronic sup-
plementary material, figure S21 for DTW provide geometric visualizations of the specific subset of links,
highlighting the strongest connections between parameters and emphasizing the most pronounced rela-
tionships. In particular, instead of visualizing all quantitative measures of agreement between all pairs
of the considered characteristics and showing the measure values based on colour, the graph depicts
only the pairs with values above a certain threshold, where the width of the edge represents the value.
The graphs are presented in figure 5 (for the CCD metric) and electronic supplementary material, figure
S22 (for the DTW metric) where the graph’s vertices represent characteristics and edges denote strong
correlations which exceed the threshold 0.25. Similarly to the tree comparisons, the results between the
cophenetic correlation and Baker's Gamma methods agree fairly well, with some minor discrepancies.
This supports the robustness of findings despite the chosen method. The cophenetic correlation and
Baker’s Gamma estimates are also summarized in electronic supplementary material, tables S1-54.

For the CCD metric, incidence was linked to various characteristics, including population health,

VOCs genetic diversity, cross-country mobility and sociodemographic characteristics. Interestingly,
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Figure 6. The visual alignment of the two hierarchical clustering trees for COVID-19 incidence (CCD) data (left tree) versus vaccination
data (CCD) (right tree). A grey line connects the same country from each tree. Each tree has been split into five clusters for illustration
purposes. The figure highlights the absence of cluster preservation. For instance, the violet cluster within the vaccination tree does not
map to a single cluster of the incidence tree. The clusters of the incidence tree, to a significant degree, agree with geographical or cultural
relationships, as will be discussed further.

among all the features, mortality was exclusively associated with population health, with no evidence of
a connection between mortality and vaccination groupings and moderate correlation between incidence
and vaccination groupings. VOCs genetic diversity grouping was linked to cross-country mobility data
and sociodemographic data.

The examples of visual summaries of pairwise alignments of tree pairs for which cophenetic correla-
tion and Baker’s Gamma statistics were computed are presented in figures 6 and 7 as well as electronic
supplementary material, figures 524 and 525. Those summaries provide both the hierarchical trees for
pairs of data sources as well as the corresponding visual links between the same countries located in those
trees. Each of these figures displays a tree generated for one data type on the left and a corresponding
tree for another data type on the right, with the same countries appearing in both hierarchies. Grey lines
in the centre of each figure connect the same countries across the two trees. These figures were created
for illustrative purposes, i.e. to visually highlight and emphasize how the hierarchies align by showing
structural similarities between them. The choice to split each tree into five coloured clusters (using the k
= 5 setting when specifying the pair of trees with the dendlist () function from the dendextend pack-
age) was arbitrary and made solely to facilitate easier visual interpretation of the agreement between the
two hierarchies; it did not influence any part of the analysis. Each tree could have been shown in a single
colour without affecting the analysis, but this might have made visual interpretation more difficult.

The stability of the findings using the leave-five-countries-out cross-validation approach is summa-
rized in Supplemental Tables 7-10. The results were in agreement with the initial analysis based on the
entire dataset of 42 countries. The sensitivity of the findings to the length of the aggregation interval is
summarized in Supplemental Tables 11-14 for the 2-week interval (a twofold increase in length) and in
Supplemental Tables 15-18 for the 4-week interval (a fourfold increase in length). The results remained
stable across aggregation levels and were in agreement across different interval lengths.

4. Discussion

The COVID-19 pandemic has revealed unprecedented complexities that challenge traditional epidemi-
ological modelling approaches. The dynamic nature of vaccination processes, nonlinear vaccination
effects, viral evolution and heterogeneous spatio-temporal transmission patterns, modulated by vary-
ing NPIs, demand more sophisticated analytical frameworks. Our research highlights the importance
of considering these complexities when evaluating the relationship between vaccination rates, mortality
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Figure 7. The visual alignment of the two hierarchical clustering trees for COVID-19 mortality (CCD) data (left tree) versus population
health data (right tree). A grey line connects the same country from each tree. Each tree has been split into five clusters for illustra-
tion purposes. The figure highlights the agreement between the clusterings. For example, Sweden, Ireland and the United Kingdom are
mapped from the red cluster of the mortality tree to the olive cluster on the population health tree. A significant portion of mappings
are between clusters.

dynamics and incidence dynamics. The research on optimal long-horizon government policy, including
NPIs and vaccination effects, remains still active even in 2025 [107-111]. Our methodological approach
highlights potential relationships and underscores the need for further investigation into specific areas
of the pandemic long-term dynamics.

Q1: Is it generally true that countries with similar vaccination dynamics exhibit similar dynamics of mortality?

Our clustering analysis of European countries, based on normalized mortality and incidence time se-
ries, captures pandemic-wide similarities, transcending wave-specific variations. We found that clusters
based on mortality highly agreed only with clusters based on population health. This aligns well with
existing evidence of certain chronic diseases amplifying the severity of COVID-19 [15]. However, this
study did not find evidence that clusters based on vaccinations correlate with those based on COVID-
19-related mortality. This result is not necessarily surprising: the reported infected individuals and
COVID-19-specific deaths correspond to only a small fraction of the actual underlying counts.

Previous studies have shown that the relationship between COVID-19 incidence and mortality rates
is complex, with various factors influencing these dynamics [112]. Early trends in incidence and mortal-
ity may not predict later outcomes due to the evolving nature of the virus and public health responses.
Excess mortality can arise from chronic conditions exacerbated by COVID-19 [113], while increased test-
ing may lead to better identification of cases without necessarily correlating with higher mortality rates
[114]. There could be multiple explanations for this, including the acquisition of natural immunity. While
itis impossible to determine this with certainty based on the available data, the previous studies indicate
that natural immunity from recovered individuals is considered to be at least equivalent to vaccination
protection [115], or even preferable for certain groups [116,117]. Studies have also linked higher COVID-
19 vaccination rates with lower mortality rates [118], while heavily influenced by strain introductions on
a different timeframe [119]. So our findings highlight the importance of understanding the complexity
of the phenomena throughout of comparing normalized time series, derived by inference with natural
immunity network effects, VOC introduction and NPI-timing effects.

Q2: Is it generally true that countries with similar vaccination rates exhibit similar dynamics of incidence?

In our study only a moderate correlation was observed between incidence and vaccination clustering.
Incidence, unlike mortality, was linked with many factors, including public health, VOCs’ genetic diver-
sity, cross-country movement and sociodemographics. The genetic diversity of VOCs was also linked to
mobility and sociodemographics. In both instances, the association seems to be geographical rather than
social. Indeed, this implies that patterns of mobility before the pandemic were preserved even after travel
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restrictions were implemented, potentially influencing the introduction dynamics of new phylogenetic n
lineages [14,120,121].

These findings are consistent with the notion that vaccines can shift symptomatic cases to asymp-
tomatic cases, but may not substantially impact population susceptibility, at least at the demonstrated
vaccine coverage speeds and COVID-19 vaccine effectiveness against evolving strains [122].

Q3: Is it generally true that countries with outlier NPIs are outliers both globally and within their own spatially
derived country groups?

This study does not designate Belarus and Sweden, two European countries distinguished by their
limited NPI measures, as extreme outliers, as might have been supposed at the beginning of the pan-
demic. Belarus could be deemed an outlier, not in isolation, but as part of small clusters of other
post-Soviet nations.

The temporal dynamics of NPI implementation presents critical dimension, where early interven-
tion timing may simply delay initial wave peaks rather than prevent them [119,123]. The duration and
stringency of restrictions have varied significantly across regions, with European responses spanning

‘sos1/Jeuinof B0 Buysiigndiaposyefos

diverse strategies, from minimal interventions (Sweden, Belarus) to adaptive approaches (Denmark) or f:
sustained strict measures (Portugal, Spain, UK, Germany). ‘R
The influence of NPIs on the long-term incidence of COVID-19 has been a topic of debate, particularly : ~§
regarding their effectiveness beyond immediate hospital load management. Several studies indicate that : 2,
while NPIs were effective in reducing transmission rates during acute phases of the pandemic, their long- =
term impact on overall incidence appears limited due to delayed effects and the dynamics of epidemic : {9
resurgence [124,125]. This suggests that while NPIs can be crucial in controlling outbreaks initially, their N
role becomes less significant as the virus adapts and spreads more efficiently among populations [126], E
-

or leading to potential resurgences in cases after lifting restrictions [127].

These findings are in agreement with novel pandemic mitigation measures, which primarily highlight
targeted approaches for specific population groups, prioritizing care and vaccination for identified target
groups [128,129], and developing strategies for network-based NPIs [121,129-132], rather than relying
on total or static NPIs. These findings also bring support for a novel approach to implementing dynamic
NPIs proactively [133-137] and adapting to the epidemic phase [106].

4.1. Limitations of the study

It is important to emphasize that the identified associations are not necessarily causal. The secondary
data did not come from a controlled experiment, and the studied associations may be influenced by
a plethora of confounders. Additionally, the fact that the analysis used aggregated data counts may
have affected the findings. The primary aim of this paper was not to directly prescribe or suggest pol-
icy adjustments, but rather to introduce a methodological approach capable of highlighting potential
relationships and emphasizing the need for further investigation into specific areas. Our contribution
lies in presenting a framework for analysing long-term pandemic data, including the disentanglement
of complex effects arising from viral mutations (e.g. VOC strains) and vaccination campaigns. How-
ever, formulating explicit policy recommendations would require more in-depth analysis, particularly
through individual-level modelling, which falls outside the scope of the present study.

The related concern for the analysed data is the under-reporting of epidemiological data [138], which
is typical for respiratory diseases. In addition, there are differences in reporting and data quality between
countries that can be due to differences in testing capabilities, reporting practices and policies, frequency
and consistency of reporting, and population access to healthcare [96,139-141]. Consistency or compara-
bility of reporting biases across countries is not assumed. It is recognized that each country has its own
reporting system, accompanied by biases that may also vary over time. A method is proposed that iden-
tifies groupings of countries based on similarities in the dynamics of reported characteristics, without
assumptions being made about the nature of those similarities. Reporting bias is considered one of the
possible, and arguably one of the most significant, factors contributing to differences in these dynamics.
The approach is designed to capture such influences.

The other concern is that the definition of a case may differ regionally. While lab-confirmed cases may
seem straightforward, how cases are reported can differ. Cases may be ambiguously reported based on
the day of the first symptom onset, the sample collection date or the sample processing date. Similar am-
biguity exists for mortality; for example, an individual may die from COVID-19-related complications
soon after formal recovery with negative lab tests. Therefore, reported incidence and mortality should

only be treated as approximations for real-time series.
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Non-epidemiological data are also subject to various shortcomings and biases. In particular, the mo-
bility data were only available for the years 2011-2016, thus preceding the pre-pandemic period; more-
over, Serbia and Montenegro were not included in these data [67,68]. Furthermore, aggregated statistics
for the entire country’s sociodemographic, health and economic categories may not reflect fine details
and particular subpopulations, thus potentially leading to ecological fallacies [142]. For instance, the pop-
ulation groups most affected by COVID-19 may have more limited access to the healthcare system than
the “average’ population.

The analysed factors are not exhaustive, and many characteristics were not included in the present
study and may be analysed in future studies. In particular, it would be interesting for future studies
to explore the relations between various characteristics and excess mortality. Research in this area has
already been conducted [143]. Besides providing an alternative source of information about COVID-
related deaths, it may, for instance, also provide deeper insights into the effects of vaccination [144-146].
It should be noted, however, that the excess mortality data were not reported as frequently as other
epidemiological data, with significant delays and different degrees of accessibility and availability for
different countries [38]. Several potentially significant non-epidemiological factors were also left for fu-
ture research. This includes secondary measures of NPI implementation [133,147], such as the stringency
index [148], vitamin D deficiency [149], climate parameters [150], seasonal behavioural patterns [151],
ethnic composition of the population [152], literacy [153], conformity to government regulations [130],
political adherence [154], social and urban stratification [155-157], media influence [158], air pollution
[159], diet [149], observed mobility [160,161] (e.g. Google Mobility Report, card transactions, cell phone
records, carbon measurements of car and factory activities), founder and Matthew effects [162], age struc-
ture [163,164] and cross-reactive immunity from prior exposures [165]. As regards to the methodology,
it also can be expanded by adding, for instance, other widely used tree comparison metrics, such as
Fowlkes-Mallows index [166] or Robinson-Foulds distance [167].

It is also important to emphasize and further elaborate on the distinct advantages and limitations of
CCD and DTW distances. This will help to clarify the contexts in which each metric may offer more
meaningful insights, depending on the structure and characteristics of the studied time-series data.

More specifically, the DTW method is a well-established algorithm specifically designed to measure
similarities between time series that may differ in speed. It accounts for both acceleration and decel-
eration, making it particularly well-suited for analysing time-series data. However, DTW has several
important limitations. One of its key drawbacks is its high sensitivity to noise and outliers, which can
be matched at corresponding time points and significantly distort similarity measurements [168]. This
is especially critical in the context of disease reporting, where irregular, uneven or underreported data
can affect the robustness of the results. Another limitation of DTW is that it is not invariant to scaling
[169,170]. This necessitates normalization of the data. Although the data used in our analysis were nor-
malized by population size, the population figures are not available for every reporting period. Instead,
they are based on annual estimates recorded on 1 January of each year. This introduces potential bias
into any population-based normalization of per capita incidence rates.

On the other hand, the CCD metric presents a different set of limitations. While its unitless nature al-
lows for the comparison of time series across different spatial scales and data sources, it also has inherent
drawbacks. Specifically, it may struggle with non-stationarity and non-linear dependencies [171], and it
relies on linear shift assumptions rather than capturing more complex patterns [172].

Itis also important to discuss the choice of the correlation cutoff value of 0.25, which was used to gener-
ate the connected graphs illustrated in figure 5 and electronic supplementary material, figure S22. During
manuscript preparation, a sensitivity analysis was performed to evaluate different correlation cutoff
values. The range of values considered spanned from 0.25 to 0.50, in increments of 0.05. Values above
this range were not included, as at a threshold of 0.50 the graph began to fragment into disconnected
components, failing to provide a connected or interpretable pattern.

The choice of the lower bound of 0.25 was informed by the literature, where values below this thresh-
old are generally not recommended as meaningful for interpreting effect sizes [173,174]. When thresholds
in the range of 0.25-0.30 were applied, the graph structure began to stabilize, making 0.25 a reasonable
and effective choice for capturing potentially important links.

The choice of Euclidean distance on z-score-transformed variables was made because it represents
the simplest and most interpretable approach. Mahalanobis distance was also briefly considered. While
it is a valuable method that accounts for correlations between variables, it has several drawbacks that
led us to exclude it from the present analysis. Specifically, Mahalanobis distance requires the compu-
tation and inversion of a covariance matrix, which can be computationally intensive and numerically
unstable —particularly when the matrix includes highly collinear variables or is close to singular. Most
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importantly, in some cases, the covariance matrix may not be invertible due to singularity, making the
method inapplicable for certain datasets. Our objective was to adopt a method that is robust and always
broadly applicable across all realistic scenarios. In contrast, Euclidean distance offers simplicity and con-
sistency, ensuring its applicability across diverse data types and configurations. This does not, however,
preclude readers from using Mahalanobis distance as an alternative in cases where it is deemed appropri-
ate, i.e. when a stable, non-singular correlation matrix is available for selected datasets, since the overall
framework remains unchanged.

The other important potential limitation is that typically both incidence and mortality are not influ-
enced or associated with individual single factors considered in the presented study individually, but
rather by combinations of such factors, which may have potentially very complex interactions with both
incidence and mortality and with each other [175,176] as well as influenced by the external factors such
as cross-reactive immunity [165]. The study of all such interactions is not plausible, so the study goal
was to identify the individual factors that may affect the studied outcomes for future, more scrutinized
investigations.

It is also beneficial to discuss practical aspects of applying the method, such as potential implementa-
tion challenges, runtime considerations, software-specific dependencies and other possible limitations.
The complete analysis code has been made publicly available on GitHub [95], ensuring transparency and
reproducibility of the findings and making the methodology accessible to a broader audience.

Given the limited number of countries and time series, the computational requirements are minimal.
The methodology can be executed on any operating system with R installed, and equivalent function-
ality can be implemented using Python libraries for time-series analysis and cross-correlation. Running
the entire pipeline, including generating all outputs provided in the GitHub repository, takes less than
an hour on a modern personal computer, highlighting the method’s practical applicability. The distance
functions employed (e.g. CCD and DTW) are available natively or through standard R packages.

5. Conclusion

In conclusion, this study demonstrates the utility of clustering-based approaches in identifying patterns
and relationships between COVID-19 dynamics and various public health and sociodemographic factors
across 42 European countries. The results highlight distinct associations between different characteris-
tics, with notable connections between vaccination, incidence, mortality, genetic diversity, mobility and
sociodemographic factors. These findings offer valuable insights into the underlying drivers of epidemio-
logical disparities, which can inform targeted public health interventions and policies tailored to specific
regional and demographic contexts.

The method is particularly useful when primary characteristics (e.g. disease incidence, mortality rates)
and numerous auxiliary variables are available, but their relevance is uncertain. It identifies key auxiliary
variables by analysing clustering patterns, helping to prioritize further research. Although the analysis
is associative, it supports targeted policy investigations into potential drivers of trends or the absence of
effects across the entire multi-wave pandemic (e.g. beyond initial outbreaks).
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