Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/338806
Title: Applications of mathematical and computer modeling in the Sensor Location Problem
Authors: Pilipchuk, L. A.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: Dec-2025
Publisher: Minsk: BSU
Citation: Pilipchuk L. A. Applications of mathematical and computer modeling in the Sensor Location Problem // International scientic conference ≪8th Bogdanov Readings. Differential Equations≫ : proceedings of the International scientic conference, / editorial board : S.G. Krasovsky [et al.]. Minsk, December 2–5, 2025. Minsk : BSU, 2025. – P. 170–172.
Abstract: We consider a real-world problem of constructing such a suboptimal solution of the problem of estimating homogeneous flow in a bidirectional network and guaranteeing that the network is fully monitored. Unlike the problem of finding the optimal solution which is NP-complete and has huge computational costs, the search for a suboptimal solution does not require to minimize the set of monitored network nodes. Our approach can be used for examining intelligent transportation systems and creating algorithms for solving Sensor Location Problem for a bidirectional graph. The sensors are placed in the graph nodes in order to estimate the homogeneous flow in the unmonitored part of the graph.
URI: https://elib.bsu.by/handle/123456789/338806
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Статьи факультета прикладной математики и информатики

Files in This Item:
File Description SizeFormat 
PilipchukBogdChten.PDF1,01 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.