Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/323088
Title: | First-Order Sparse TSK Nonstationary Fuzzy Neural Network Based on the Mean Shift Algorithm and the Group Lasso Regularization |
Authors: | Zhang, B. Wang, J. Gong, X. Shi, Z. Zhang, C. Zhang, K. El-Alfy, E.-S.M. Ablameyko, S.V. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика |
Issue Date: | 2024 |
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) |
Citation: | Mathematics 2024;12(1): 120 |
Abstract: | Nonstationary fuzzy inference systems (NFIS) are able to tackle uncertainties and avoid the difficulty of type-reduction operation. Combining NFIS and neural network, a first-order sparse TSK nonstationary fuzzy neural network (SNFNN-1) is proposed in this paper to improve the interpretability/translatability of neural networks and the self-learning ability of fuzzy rules/sets. The whole architecture of SNFNN-1 can be considered as an integrated model of multiple sub-networks with a variation in center, variation in width or variation in noise. Thus, it is able to model both “intraexpert” and “interexpert” variability. There are two techniques adopted in this network: the Mean Shift-based fuzzy partition and the Group Lasso-based rule selection, which can adaptively generate a suitable number of clusters and select important fuzzy rules, respectively. Quantitative experiments on six UCI datasets demonstrate the effectiveness and robustness of the proposed mode |
URI: | https://elib.bsu.by/handle/123456789/323088 |
DOI: | 10.3390/math12010120 |
Scopus: | 85182188314 |
Sponsorship: | This research was funded in part by the National Natural Science Foundation of China under Grant 62173345; and in part by the Fundamental Research Funds for the Central Universities under Grant 22CX03002A; and in part by the China-CEEC Higher Education Institutions Consortium Program under Grant 2022151; and in part by the Introduction Plan for High Talent Foreign Experts under Grant G2023152012L; and in part by the “The Belt and Road” Innovative Talents Exchange Foreign Experts Project under Grant DL2023152001L; and in part by the National Natural Science Foundation of China under Grant 62176040 and Grant 62306337; and in part by SDAIA-KFUPM Joint Research Center for Artificial Intelligence Fellowship Program under Grant JRC-AI-RFP-04. |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Кафедра веб-технологий и компьютерного моделирования (статьи) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
mathematics-12-00120.pdf | 730,85 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.