Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/323088
Title: First-Order Sparse TSK Nonstationary Fuzzy Neural Network Based on the Mean Shift Algorithm and the Group Lasso Regularization
Authors: Zhang, B.
Wang, J.
Gong, X.
Shi, Z.
Zhang, C.
Zhang, K.
El-Alfy, E.-S.M.
Ablameyko, S.V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2024
Publisher: Multidisciplinary Digital Publishing Institute (MDPI)
Citation: Mathematics 2024;12(1): 120
Abstract: Nonstationary fuzzy inference systems (NFIS) are able to tackle uncertainties and avoid the difficulty of type-reduction operation. Combining NFIS and neural network, a first-order sparse TSK nonstationary fuzzy neural network (SNFNN-1) is proposed in this paper to improve the interpretability/translatability of neural networks and the self-learning ability of fuzzy rules/sets. The whole architecture of SNFNN-1 can be considered as an integrated model of multiple sub-networks with a variation in center, variation in width or variation in noise. Thus, it is able to model both “intraexpert” and “interexpert” variability. There are two techniques adopted in this network: the Mean Shift-based fuzzy partition and the Group Lasso-based rule selection, which can adaptively generate a suitable number of clusters and select important fuzzy rules, respectively. Quantitative experiments on six UCI datasets demonstrate the effectiveness and robustness of the proposed mode
URI: https://elib.bsu.by/handle/123456789/323088
DOI: 10.3390/math12010120
Scopus: 85182188314
Sponsorship: This research was funded in part by the National Natural Science Foundation of China under Grant 62173345; and in part by the Fundamental Research Funds for the Central Universities under Grant 22CX03002A; and in part by the China-CEEC Higher Education Institutions Consortium Program under Grant 2022151; and in part by the Introduction Plan for High Talent Foreign Experts under Grant G2023152012L; and in part by the “The Belt and Road” Innovative Talents Exchange Foreign Experts Project under Grant DL2023152001L; and in part by the National Natural Science Foundation of China under Grant 62176040 and Grant 62306337; and in part by SDAIA-KFUPM Joint Research Center for Artificial Intelligence Fellowship Program under Grant JRC-AI-RFP-04.
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Кафедра веб-технологий и компьютерного моделирования (статьи)

Files in This Item:
File Description SizeFormat 
mathematics-12-00120.pdf730,85 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.