Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/323088
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorZhang, B.-
dc.contributor.authorWang, J.-
dc.contributor.authorGong, X.-
dc.contributor.authorShi, Z.-
dc.contributor.authorZhang, C.-
dc.contributor.authorZhang, K.-
dc.contributor.authorEl-Alfy, E.-S.M.-
dc.contributor.authorAblameyko, S.V.-
dc.date.accessioned2024-12-13T13:37:13Z-
dc.date.available2024-12-13T13:37:13Z-
dc.date.issued2024-
dc.identifier.citationMathematics 2024;12(1): 120ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/323088-
dc.description.abstractNonstationary fuzzy inference systems (NFIS) are able to tackle uncertainties and avoid the difficulty of type-reduction operation. Combining NFIS and neural network, a first-order sparse TSK nonstationary fuzzy neural network (SNFNN-1) is proposed in this paper to improve the interpretability/translatability of neural networks and the self-learning ability of fuzzy rules/sets. The whole architecture of SNFNN-1 can be considered as an integrated model of multiple sub-networks with a variation in center, variation in width or variation in noise. Thus, it is able to model both “intraexpert” and “interexpert” variability. There are two techniques adopted in this network: the Mean Shift-based fuzzy partition and the Group Lasso-based rule selection, which can adaptively generate a suitable number of clusters and select important fuzzy rules, respectively. Quantitative experiments on six UCI datasets demonstrate the effectiveness and robustness of the proposed moderu
dc.description.sponsorshipThis research was funded in part by the National Natural Science Foundation of China under Grant 62173345; and in part by the Fundamental Research Funds for the Central Universities under Grant 22CX03002A; and in part by the China-CEEC Higher Education Institutions Consortium Program under Grant 2022151; and in part by the Introduction Plan for High Talent Foreign Experts under Grant G2023152012L; and in part by the “The Belt and Road” Innovative Talents Exchange Foreign Experts Project under Grant DL2023152001L; and in part by the National Natural Science Foundation of China under Grant 62176040 and Grant 62306337; and in part by SDAIA-KFUPM Joint Research Center for Artificial Intelligence Fellowship Program under Grant JRC-AI-RFP-04.ru
dc.language.isoenru
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)ru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.titleFirst-Order Sparse TSK Nonstationary Fuzzy Neural Network Based on the Mean Shift Algorithm and the Group Lasso Regularizationru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.3390/math12010120-
dc.identifier.scopus85182188314-
Располагается в коллекциях:Кафедра веб-технологий и компьютерного моделирования (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
mathematics-12-00120.pdf730,85 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.