Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/323088
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Zhang, B. | - |
dc.contributor.author | Wang, J. | - |
dc.contributor.author | Gong, X. | - |
dc.contributor.author | Shi, Z. | - |
dc.contributor.author | Zhang, C. | - |
dc.contributor.author | Zhang, K. | - |
dc.contributor.author | El-Alfy, E.-S.M. | - |
dc.contributor.author | Ablameyko, S.V. | - |
dc.date.accessioned | 2024-12-13T13:37:13Z | - |
dc.date.available | 2024-12-13T13:37:13Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Mathematics 2024;12(1): 120 | ru |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/323088 | - |
dc.description.abstract | Nonstationary fuzzy inference systems (NFIS) are able to tackle uncertainties and avoid the difficulty of type-reduction operation. Combining NFIS and neural network, a first-order sparse TSK nonstationary fuzzy neural network (SNFNN-1) is proposed in this paper to improve the interpretability/translatability of neural networks and the self-learning ability of fuzzy rules/sets. The whole architecture of SNFNN-1 can be considered as an integrated model of multiple sub-networks with a variation in center, variation in width or variation in noise. Thus, it is able to model both “intraexpert” and “interexpert” variability. There are two techniques adopted in this network: the Mean Shift-based fuzzy partition and the Group Lasso-based rule selection, which can adaptively generate a suitable number of clusters and select important fuzzy rules, respectively. Quantitative experiments on six UCI datasets demonstrate the effectiveness and robustness of the proposed mode | ru |
dc.description.sponsorship | This research was funded in part by the National Natural Science Foundation of China under Grant 62173345; and in part by the Fundamental Research Funds for the Central Universities under Grant 22CX03002A; and in part by the China-CEEC Higher Education Institutions Consortium Program under Grant 2022151; and in part by the Introduction Plan for High Talent Foreign Experts under Grant G2023152012L; and in part by the “The Belt and Road” Innovative Talents Exchange Foreign Experts Project under Grant DL2023152001L; and in part by the National Natural Science Foundation of China under Grant 62176040 and Grant 62306337; and in part by SDAIA-KFUPM Joint Research Center for Artificial Intelligence Fellowship Program under Grant JRC-AI-RFP-04. | ru |
dc.language.iso | en | ru |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | ru |
dc.rights | info:eu-repo/semantics/openAccess | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | ru |
dc.title | First-Order Sparse TSK Nonstationary Fuzzy Neural Network Based on the Mean Shift Algorithm and the Group Lasso Regularization | ru |
dc.type | article | ru |
dc.rights.license | CC BY 4.0 | ru |
dc.identifier.DOI | 10.3390/math12010120 | - |
dc.identifier.scopus | 85182188314 | - |
Располагается в коллекциях: | Кафедра веб-технологий и компьютерного моделирования (статьи) |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
mathematics-12-00120.pdf | 730,85 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.