Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/323033
Title: | On unconditionality of fractional Rademacher chaos in symmetric spaces |
Authors: | Astashkin, S.V. Lykov, K.V. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 2024 |
Publisher: | Steklov Mathematical Institute of Russian Academy of Sciences |
Citation: | Izvestiya: Mathematics. 2024;88(1):1–17. |
Abstract: | We study density estimates of an index set A under which the unconditionality (or even the weaker property of random unconditional divergence) of the corresponding Rademacher fractional chaos {rj1 (t)× rj2 (t)…rjd (t)}(j1,j2,…,jd)εA in a symmetric space X implies its equivalence in X to the canonical basis in l2. In the special case of Orlicz spaces LM, unconditionality of this system is also shown to be equivalent to the fact that a certain exponential Orlicz space embeds into LM. |
URI: | https://elib.bsu.by/handle/123456789/323033 |
DOI: | 10.4213/im9406e |
Scopus: | 85203151401 |
Sponsorship: | 075-02-2023-931 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Кафедра функционального анализа и аналитической экономики (статьи) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
im9406_eng.pdf | 666,47 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.