Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/323033
Title: On unconditionality of fractional Rademacher chaos in symmetric spaces
Authors: Astashkin, S.V.
Lykov, K.V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2024
Publisher: Steklov Mathematical Institute of Russian Academy of Sciences
Citation: Izvestiya: Mathematics. 2024;88(1):1–17.
Abstract: We study density estimates of an index set A under which the unconditionality (or even the weaker property of random unconditional divergence) of the corresponding Rademacher fractional chaos {rj1 (t)× rj2 (t)…rjd (t)}(j1,j2,…,jd)εA in a symmetric space X implies its equivalence in X to the canonical basis in l2. In the special case of Orlicz spaces LM, unconditionality of this system is also shown to be equivalent to the fact that a certain exponential Orlicz space embeds into LM.
URI: https://elib.bsu.by/handle/123456789/323033
DOI: 10.4213/im9406e
Scopus: 85203151401
Sponsorship: 075-02-2023-931
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Кафедра функционального анализа и аналитической экономики (статьи)

Files in This Item:
File Description SizeFormat 
im9406_eng.pdf666,47 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.