Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/323033| Title: | On unconditionality of fractional Rademacher chaos in symmetric spaces |
| Authors: | Astashkin, S.V. Lykov, K.V. |
| Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
| Issue Date: | 2024 |
| Publisher: | Steklov Mathematical Institute of Russian Academy of Sciences |
| Citation: | Izvestiya: Mathematics. 2024;88(1):1–17. |
| Abstract: | We study density estimates of an index set A under which the unconditionality (or even the weaker property of random unconditional divergence) of the corresponding Rademacher fractional chaos {rj1 (t)× rj2 (t)…rjd (t)}(j1,j2,…,jd)εA in a symmetric space X implies its equivalence in X to the canonical basis in l2. In the special case of Orlicz spaces LM, unconditionality of this system is also shown to be equivalent to the fact that a certain exponential Orlicz space embeds into LM. |
| URI: | https://elib.bsu.by/handle/123456789/323033 |
| DOI: | 10.4213/im9406e |
| Scopus: | 85203151401 |
| Sponsorship: | 075-02-2023-931 |
| Licence: | info:eu-repo/semantics/openAccess |
| Appears in Collections: | Кафедра функционального анализа и аналитической экономики (статьи) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| im9406_eng.pdf | 666,47 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

