Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
                
     
    https://elib.bsu.by/handle/123456789/323033Полная запись метаданных
| Поле DC | Значение | Язык | 
|---|---|---|
| dc.contributor.author | Astashkin, S.V. | - | 
| dc.contributor.author | Lykov, K.V. | - | 
| dc.date.accessioned | 2024-12-13T07:54:06Z | - | 
| dc.date.available | 2024-12-13T07:54:06Z | - | 
| dc.date.issued | 2024 | - | 
| dc.identifier.citation | Izvestiya: Mathematics. 2024;88(1):1–17. | ru | 
| dc.identifier.uri | https://elib.bsu.by/handle/123456789/323033 | - | 
| dc.description.abstract | We study density estimates of an index set A under which the unconditionality (or even the weaker property of random unconditional divergence) of the corresponding Rademacher fractional chaos {rj1 (t)× rj2 (t)…rjd (t)}(j1,j2,…,jd)εA in a symmetric space X implies its equivalence in X to the canonical basis in l2. In the special case of Orlicz spaces LM, unconditionality of this system is also shown to be equivalent to the fact that a certain exponential Orlicz space embeds into LM. | ru | 
| dc.description.sponsorship | 075-02-2023-931 | ru | 
| dc.language.iso | en | ru | 
| dc.publisher | Steklov Mathematical Institute of Russian Academy of Sciences | ru | 
| dc.rights | info:eu-repo/semantics/openAccess | ru | 
| dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru | 
| dc.title | On unconditionality of fractional Rademacher chaos in symmetric spaces | ru | 
| dc.type | article | ru | 
| dc.rights.license | CC BY 4.0 | ru | 
| dc.identifier.DOI | 10.4213/im9406e | - | 
| dc.identifier.scopus | 85203151401 | - | 
| Располагается в коллекциях: | Кафедра функционального анализа и аналитической экономики (статьи) | |
Полный текст документа:
| Файл | Описание | Размер | Формат | |
|---|---|---|---|---|
| im9406_eng.pdf | 666,47 kB | Adobe PDF | Открыть | 
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.

