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On unconditionality of fractional
Rademacher chaos in symmetric spaces

S. V. Astashkin and K. V. Lykov

Abstract. We study density estimates of an index set A under which the
unconditionality (or even the weaker property of random unconditional
divergence) of the corresponding Rademacher fractional chaos {rj1(t)×
rj2(t) · · · rjd(t)}(j1,j2,...,jd)∈A in a symmetric space X implies its equivalence
in X to the canonical basis in ℓ2. In the special case of Orlicz spaces LM ,
unconditionality of this system is also shown to be equivalent to the fact
that a certain exponential Orlicz space embeds into LM .

Keywords: Rademacher functions, Rademacher chaos, symmetric space,
combinatorial dimension, unconditional convergence.

§ 1. Introduction

As usual, the Rademacher functions are defined as follows: if 0 ⩽ t ⩽ 1, then

rj(t) := (−1)[2
jt], j = 1, 2, . . . ,

where [x] denotes the integer part of a real number x (that is, the greatest integer
not exceeding x). According to the classical Khintchine inequality (see [1], and
also [2]), for any p ⩾ 1, there exists a constant Cp such that, for arbitrary aj ∈ R,
j = 1, 2, . . . , ∥∥∥∥ ∞∑

j=1

ajrj

∥∥∥∥
Lp[0,1]

⩽ Cp

( ∞∑
j=1

a2j

)1/2

. (1)

It is well known that Cp ⩽
√
p (the sharp values of the constants in this inequality

were given by Haagerup [3]). In the opposite direction, Szarek [4] proved that, for
all p ⩾ 1 and ak ∈ R, k = 1, 2, . . . ,

1√
2

( ∞∑
j=1

a2j

)1/2

⩽

∥∥∥∥ ∞∑
j=1

ajrj

∥∥∥∥
Lp[0,1]

. (2)

These inequalities, which gave an impetus for an enormous number of investigations
and generalizations, have found numerous applications in various fields of analy-
sis. Recall that Khintchine proved inequality (1) “by pursuing the goal of finding

The work of the first named author was completed as a part of the implementation of the devel-
opment program of the Volga Region Scientific and Educational Mathematical Center (agreement
no. 075-02-2023-931).

AMS 2020 Mathematics Subject Classification. 46B09, 46E30.

c○ 2024 Russian Academy of Sciences, Steklov Mathematical Institute of RAS

https://doi.org/10.4213/im9406e


2 S. V. Astashkin and K. V. Lykov

the ‘right’ rate of convergence in the strong law of large numbers of Borel” [5].
At the same time, from the point of view of the geometry of Banach spaces, inequal-
ities (1) and (2) indicate that the spaces Lp[0, 1], 1 ⩽ p < ∞, which are not Hilbert
spaces for p ̸= 2, still contain subspaces isomorphic to ℓ2. A characterization of the
symmetric spaces X in which the sequence {rj}∞j=1 is equivalent to the canonical
basis in ℓ2 was given by Rodin and Semenov in [6], who proved that this equiva-
lence holds if and only if X contains the separable part of the Orlicz space ExpL2

generated by the function N2(u) = eu
2 −1. In [7], a similar question was studied for

the system {rj1(t) · rj2(t)}j1>j2 of products of Rademacher functions, which is usu-
ally called the second-order Rademacher chaos. Specifically, it was shown that this
system is equivalent in X to the canonical basis in ℓ2 if and only if X contains the
separable part of the Orlicz space ExpL generated by the function N1(u) = eu−1.
Moreover, both these properties were found to be equivalent to the formally weaker
(than the equivalence to the canonical basis in ℓ2) property of unconditionality
of the basic sequence {rj1(t) · rj2(t)}j1>j2 in X (see [8]). Note that the Radema-
cher system itself is an unconditional (and even symmetric with constant 1) basic
sequence in any symmetric space (see for example, Proposition 2.2 in [2]). The
next step in the study of the behaviour of the Rademacher chaos in symmetric
spaces was made by the authors of the present paper by employing the impor-
tant concept of combinatorial dimension developed earlier by Blei (see [10]–[14]).
Namely, in [9] it was shown that the above results in [7] and [8] can be extended
to a non-complete chaos {rj1(t) · rj2(t) · · · rjd(t)}(j1,j2,...,jd)∈A if the combinatorial
dimension of the corresponding index set A ⊂ Nd is d.

The main purpose of this paper is to find conditions on an index set A under
which the unconditionality of the system {rj1(t) · rj2(t) · · · rjd(t)}(j1,j2,...,jd)∈A in
a symmetric space X guaranties its equivalence in X to the canonical basis in ℓ2.
In particular, bearing in mind the aforementioned specifics in the behaviour of the
chaos in comparison with the Rademacher system itself, we investigate a quan-
titative dependence of the behaviour of such a subsystem on the combinatorial
dimension of the corresponding index set. To achieve this goal, we slightly mod-
ify the notion of combinatorial dimension using one-sided density estimates for
an index set A, which allows us to substantially extend the scope of estimates of
the form (1).

A new effect appearing in the present paper is worth pointing out. Accord-
ing to Theorem 1 below, certain density estimates of an index set guarantee that
“remoteness” of a symmetric space X from the “extreme” space L∞ is a consequence
of the so-called random unconditional divergence (RUD) property of the system
{rj1(t) · rj2(t) · · · rjd(t)}(j1,j2,...,jd)∈A in X, which is weaker than its unconditional-
ity. Thus, in this case, such a system possesses the RUD property in a symmetric
space X if and only if it is equivalent in X to the canonical basis in ℓ2 (see Theo-
rem 2). In the special case of the Orlicz spaces LM , basic properties of the system
{rj1(t) · rj2(t) · · · rjd(t)}(j1,j2,...,jd)∈A can also be characterized in terms of contin-
uous embeddings of certain exponential Orlicz spaces into LM (see Theorem 3).
Note that related results for Orlicz spaces were obtained earlier by Blei and Ge [15]
and [16], who, instead of dealing with unconditionality properties of the system,
provide a more detailed analysis of the combinatorial dimension of the correspond-
ing index set.
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In the concluding part of the present paper, we show that every uniformly
bounded Bessel system (in particular, any Rademacher chaos) in a symmetric
space X such that ExpL2 ⊂ X possesses the random unconditional convergence
(RUC) property, which is in a certain sense opposite to the RUD property. In addi-
tion, we give a concrete example illustrating the interesting fact of “divergence”
of the moment estimates of a Rademacher fractional chaos and its asymptotic
behaviour (see also [14]).

§ 2. Preliminaries

In what follows, any embedding of a given Banach space into another one is
assumed to be continuous, that is, X1 ⊂ X0 means that if x ∈ X1, then x ∈ X0

and ∥x∥X0
⩽ C∥x∥X1

for some C > 0. If the value of the embedding constant C

is important for our analysis, we will additionally write X1

C
⊂ X0. The notation of

F1 ≍ F2 means that cF1 ⩽ F2 ⩽ CF1 for some constants c > 0 and C > 0, and
these constants are independent of all or a part of the arguments of F1 and F2; it
should be clear from the context which arguments are involved.

By | · | we denote either the absolute value of a number (or a function) or the
cardinality of a set, depending on the context.

2.1. Symmetric spaces. A detailed exposition of the theory of symmetric spaces
can be found in the books [17]–[19].

Let S be the set of (equivalence classes of) measurable almost everywhere finite
real-valued functions on [0, 1] with the usual Lebesgue measure µ.

The distribution function of a function x = x(t) ∈ S is defined as follows:

nx(τ) = µ{t : x(t) > τ}, τ ∈ R.

Two functions x and y are called equidistributed if they have the same distribution
functions; they are equimeasurable if the functions |x| and |y| are equidistributed.

For any function x = x(t) ∈ S, there exists a unique decreasing left-continuous
non-negative function x∗ = x∗(t) on [0, 1] equimeasurable with x(t); this function,
which is referred to as the rearrangement of x, is given by the formula (see [17], § 2.2)

x∗(t) = inf{τ : n|x|(τ) < t}.

Definition 1. A Banach space X, X ⊂ S, is said to be ideal if the conditions
x ∈ X, y ∈ S and |y| ⩽ |x| imply that y ∈ X and ∥y∥X ⩽ ∥x∥X . A Banach ideal
space X is said to be symmetric if the conditions x ∈ X, y ∈ S and y∗ = x∗ imply
that y ∈ X and ∥y∥X = ∥x∥X .

By definition, if x lies in a symmetric space, then this space also contains all the
functions equimeasurable with x.

Let us give some examples of symmetric spaces on [0, 1]. As usual, the space
Lp = Lp[0, 1], 1 ⩽ p < ∞, consists of all functions x ∈ S with

∥x∥p :=

(∫ 1

0

|x(t)|p dt
)1/p

< ∞.
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For p > q, we have Lp

1
⊂ Lq. In the limit case p → ∞, we have the space L∞ with

the norm

∥x∥∞ := ess sup
t∈[0,1]

|x(t)| = inf
{
C : µ{t ∈ [0, 1] : |x(t)| > C} = 0

}
.

Orlicz spaces appear as natural generalizations of Lp-spaces. Let M = M(u)
be an Orlicz function, that is, a convex non-negative function on [0,∞) which is
not identically zero and M(0) = 0. The Orlicz space LM consists of all functions
x = x(t) such that ∫ 1

0

M

(
|x(t)|
λ

)
dt < ∞

for some λ > 0. The norm in LM is defined by

∥x∥LM
:= inf

{
λ > 0:

∫ 1

0

M

(
|x(t)|
λ

)
dt ⩽ 1

}
.

In particular, LMp
= Lp isometrically if Mp(u) = up. By ExpLr, r > 0, we will

denote the exponential Orlicz space generated by an Orlicz function Nr(u) such
that, for some u0 > 0, logNr(u) ≍ ur if u > u0.

We will repeatedly use the following extrapolation description of the exponential
Orlicz spaces ExpLr (see [20], formulas (2)–(4), [21], § 2, or [13], Ch. X, Lemma 18):

∥x∥ExpLr ≍ sup
p⩾1

∥x∥p
p1/r

. (3)

For a more detailed account of Orlicz spaces, see, for instance, the book [22].
Let φ be a continuous increasing concave function on [0, 1], φ(0) = 0. The Lorentz

space Λ(φ) consists of all functions x ∈ S such that

∥x∥Λ(φ) :=

∫ 1

0

x∗(t) dφ(t),

and the Marcinkiewicz space M(φ) consists of all functions x ∈ S such that

∥x∥M(φ) := sup
t∈(0,1]

φ(t)

t

∫ t

0

x∗(s) ds.

For any symmetric space X on [0, 1], we have L∞ ⊂ X ⊂ L1 (see Theorem II.4.1
in [17]). The closure of L∞ in a symmetric space X is referred as the separable part
of X, and is denoted by X◦. If X ̸= L∞, then X◦ is a separable symmetric space.

An important characteristic of a symmetric space X is its fundamental func-
tion ϕX defined by

ϕX(t) := ∥χ(0,t)∥X , t ∈ [0, 1].

Throughout the paper, χA is the characteristic function (indicator) of a set A ⊂
[0, 1]. The fundamental function of a symmetric space is quasiconcave (that is,
ϕX(t) is increasing, ϕX(t)/t is decreasing, and ϕX(0) = 0). Recall also that any
quasiconcave function is equivalent to its smallest concave majorant (in the sense
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of the relation ≍ defined above; see [17], the corollary after Theorem II.1.1). In
particular,

ϕM(φ)(t) = ϕΛ(φ)(t) = φ(t), ϕLM
(t) =

1

M−1(1/t)
.

Note that Orlicz and Marcinkiewicz spaces are equal under certain conditions.
Namely (see [23], [24]), LM = M(φ) if and only if

φ(t) ≍ 1

M−1(1/t)
(4)

and ∫ 1

0

M

(
ε

φ(t)

)
dt < ∞ for some ε > 0. (5)

The Lorentz space Λ(φ) has the following extremal property in the class of
symmetric spaces: if ϕX(t) ⩽ Cφ(t) for some C > 0 and all t ∈ [0, 1], then
Λ(φ) ⊂ X (see [17], Theorem II.5.5). In particular, the Lorentz space Λ(φ) is the
smallest space among all symmetric spaces with the fundamental function φ(t).
The Marcinkiewicz space M(φ) is the biggest space in the same class (see [17],
Theorem II.5.7). So, if a symmetric space X is such that ϕX = φ, then the
following continuous embeddings holds:

Λ(φ) ⊂ X ⊂ M(φ). (6)

2.2. Combinatorial dimension and (α, β)-sets. Based on the notion of the
fractional Cartesian product (see [10]), Blei put forward the following definition
of the combinatorial dimension of a set (see [11] and Ch. XIII in [13], which is
a good source of many interesting applications of this notion). Let d ∈ N and
Nd := N× N× · · · × N (d factors), where N is the set of positive integers.

Definition 2. A set A ⊂ Nd is said to have combinatorial dimension α if
1) for an arbitrary β > α, there exists Cβ > 0 such that, for any n ∈ N and

every collection of sets B1, B2, . . . , Bd ⊂ N, |B1| = |B2| = · · · = |Bd| = n,

|A ∩ (B1 ×B2 × · · · ×Bd)| < Cβn
β ;

2) for an arbitrary γ < α and k ∈ N, there exist n > k and sets B1, B2, . . . ,
Bd ⊂ N, |B1| = |B2| = · · · = |Bd| = n, such that

|A ∩ (B1 ×B2 × · · · ×Bd)| > nγ .

It is known that, for each real α ∈ [1, d], there exists a set of combinatorial
dimension α (see [12] or Ch. XIII in [13]).

Note that in Definition 2 there is a certain asymmetry between the lower and
upper density estimates for a set A. We will use the following modification of this
definition in which these estimates are considered separately.

Definition 3. Let A ⊂ Nd, α ⩾ 1. We will say that a set A is a super -α-set if, for
some cA > 0 and each n ∈ N, there exist sets B1, B2, . . . , Bd such that |Bj | = n,
j = 1, 2, . . . , d, and

|A ∩ (B1 ×B2 × · · · ×Bd)| ⩾ cAn
α.
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Let us emphasize that, in contrast to the second condition of Definition 2, in
Definition 3, for each positive integer n, there exist sets B1, B2, . . . , Bd for which
the lower density estimate holds.

Definition 4. Let A ⊂ Nd, β ⩽ d. We will say that A is a sub-β-set if, for some
CA > 0, each n ∈ N, and all sets B1, B2, . . . , Bd, |Bj | = n, j = 1, 2, . . . , d,

|A ∩ (B1 ×B2 × · · · ×Bd)| ⩽ CAn
β .

Definition 5. A set A ⊂ Nd which is both a super-α-set and a sub-β-set will be
called an (α, β)-set.

Let us mention some immediate consequences of the above definitions. If A is
an (α, β)-set, then α ⩽ β. Each super-α-set is an (α, d)-set. Each (α, α)-set A
has combinatorial dimension α; we will say that such a set has exact combinatorial
dimension α. Note also that, for any 1 ⩽ α < β ⩽ d, there exists an (α, β)-set that
is not a (α′, β′)-set if at least one of the inequalities α < α′ or β > β′ holds (see
Ch. XIII, Theorem 19 in [13]).

2.3. Systems of random unconditional convergence and divergence in
Banach spaces. Recall that a sequence {xk}∞k=1 of elements of a Banach space X
is called basic if it is a basis in its closed linear span. A sequence {xπ(k)}∞k=1 which is
a basic sequence for any bijection π : N → N is said to be an unconditional basic
sequence. It is well known that a basic sequence {xk}∞k=1 in a Banach space X is
unconditional in X if and only if there exists D > 0 such that, for any n ∈ N, any
collection of signs {θk}nk=1, θk = ±1, and all ak ∈ R,∥∥∥∥ n∑

k=1

θkakxk

∥∥∥∥
X

⩽ D

∥∥∥∥ n∑
k=1

akxk

∥∥∥∥
X

.

A detailed account of basic and unconditional basic sequences can be found, for
instance, in the books [25]–[27].

Each of the next notions is a natural relaxation of that of an unconditional basic
sequence.

Definition 6. A basic sequence {xk}∞k=1 in a Banach space X is called a system of
random unconditional convergence with constant D (a D-RUC system, for short),
where D > 0, if, for any n ∈ N and ak ∈ R, k = 1, 2, . . . , n,∫ 1

0

∥∥∥∥ n∑
k=1

rk(u)akxk

∥∥∥∥
X

du ⩽ D

∥∥∥∥ n∑
k=1

akxk

∥∥∥∥
X

.

A basic sequence {xk}∞k=1 in a Banach space X is called a system of random uncon-
ditional divergence with constant D (a D-RUD system, for short), where D > 0, if,
for any n ∈ N and ak ∈ R, k = 1, 2, . . . , n,∥∥∥∥ n∑

k=1

akxk

∥∥∥∥
X

⩽ D

∫ 1

0

∥∥∥∥ n∑
k=1

rk(u)akxk

∥∥∥∥
X

du.

If the exact value of the constant D of a D-RUC (a D-RUD, respectively) system
is immaterial for us, such a system will simply be called an RUC (respectively,
an RUD) system.
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The abbreviation RUC (respectively, RUD) stands for “Random Unconditional
Convergence” (respectively, “Random Unconditional Divergence”). The concept of
an RUC system was introduced in [28], where many important properties of such
systems were also established. Subsequently, the behaviour of RUC and RUD sys-
tems in various function spaces was intensively studied by many authors (see for
example, [29]–[34]).

It is clear that a basic sequence is unconditional in a Banach space if and only
if it is both an RUC and an RUD sequence in this space (see also Proposition 2.3
in [32]). Moreover, it easily follows from the definitions that a basic sequence is
a 1-RUC system (respectively, a 1-RUD system) if and only if it is 1-unconditional
(see Propositions 2.7 and 2.8 in [32]).

Let d ∈ N. By ∆d we will denote the “lower triangular” subset of the set Nd,
that is,

∆d := {(j1, j2, . . . , jd) ∈ Nd : j1 > j2 > · · · > jd}.

Throughout, by ȷ we denote multi-indices (j1, j2, . . . , jd) ∈ ∆d, d ∈ N. Next,
{rȷ}ȷ∈∆d is the usual sequence of Rademacher functions (see § 1) numbered in some
(fixed) order by multi-indices ȷ ∈ ∆d. We also set rȷ(t) := rj1(t) · rj2(t) · · · rjd(t),
ȷ = (j1, j2, . . . , jd) ∈ ∆d. It is known that the system {rȷ}ȷ∈∆d (considered in the
lexicographic order of ȷ ∈ ∆d) is basic in any symmetric space X (see Theorem 2
in [9]). However, in this paper, the numbering order of the system {rȷ}ȷ∈∆d is
immaterial.

§ 3. Main results

Our first result, which plays a key role in this paper, shows that, under certain
non-restrictive conditions on the density characteristics of an index set, the RUD
property of the corresponding subsystem of the Rademacher chaos in a symmetric
space X ensures that X is located sufficiently “far” from the space L∞.

Theorem 1. Let X be a symmetric space, d ∈ N, α, β, b ∈ R, 1 ⩽ α, β, b ⩽ d,
α + b/β > b+ 1. Let also A ⊂ ∆d be an (α, β)-set such that, for some D > 0 and
any finite set A′ ⊂ A,∥∥∥∥∑

ȷ∈A′

rȷ

∥∥∥∥
X

⩽ D

∫ 1

0

∥∥∥∥∑
ȷ∈A′

rȷ(u)rȷ

∥∥∥∥
X

du. (7)

Then X ⊃ ExpL2/b .
In particular, this embedding holds if {rȷ}ȷ∈A is an RUD sequence in X for some

(α− ε, α+ ε)-set A whenever α > b and ε > 0 is sufficiently small.

Proof. Note first that the functions φ(t) = log−b/2(e/t) and M(u) = exp(u2/b)− 1

satisfy conditions (4) and (5). Therefore, ExpL2/b = M(log−b/2(e/t)). Since, for
each γ > b/2, the space M(log−b/2(e/t)) is continuously embedded into the Lorentz
space Λ(log−γ(e/t)) (see Corollary 1 in [9]), the theorem will be proved once we
show that Λ(log−γ(e/t)) ⊂ X for some γ > b/2.

It follows from the conditions of the theorem that α > 1. We choose α0 ∈ (1, α)
so that α0 + b/β > b + 1. By the assumption, for each sufficiently large n ∈ N,
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there exist sets B1, B2, . . . , Bd such that |Bj | = n, j = 1, 2, . . . , d, and

|A ∩ Bn| ⩾ nα0 ,

where Bn := B1 ×B2 × · · · ×Bd. Let us fix an n and a set Bn satisfying the above
conditions. Since |A ∩ Bn| ⩽ nd, there exists δ ∈ [α0, d] depending on n and Bn

such that
|A ∩ Bn| = nδ. (8)

We claim that there exists a set Un ⊂ [0, 1] such that µ(Un) > 1− 2(e/2)−dn and,
for all u ∈ Un, ∥∥∥∥ ∑

ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

⩽
√
2dn(δ+1)/2. (9)

Indeed, by (8) and in view of Bernstein’s inequality (see for example, [35], Ch. 1,
§ 6, formula (42), or [2], Proposition 1.2), we have, for any t ∈ [0, 1] and λ > 0,

µ

{
u ∈ [0, 1] :

∣∣∣∣ ∑
ȷ∈A∩Bn

rȷ(u)rȷ(t)

∣∣∣∣ > λ

}
< 2e−λ2/(2nδ),

which implies

µ

{
u ∈ [0, 1] :

∣∣∣∣ ∑
ȷ∈A∩Bn

rȷ(u)rȷ(t)

∣∣∣∣ > √
2dn(δ+1)/2

}
< 2e−dn.

Note that {rȷ}ȷ∈A∩Bn
contains at most dn distinct Rademacher functions. There-

fore, there are at most 2dn variants of the values of the sequence {rȷ(t)}ȷ∈A∩Bn

where t runs over [0, 1]. Therefore, from the preceding estimate we have

µ

{
u :

∣∣∣∣ ∑
ȷ∈A∩Bn

rȷ(u)rȷ(t)

∣∣∣∣ > √
2dn(δ+1)/2 for some t ∈ [0, 1]

}
< 2dn · 2e−dn.

If now Un is the complement of the set from the last estimate, then µ(Un) >
1− 2(e/2)−dn and, for all u ∈ Un, we have (9). This proves the claim.

For all u ∈ [0, 1], we have ∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

⩽ nδ

(see (8)), and hence, by (9)∫ 1

0

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

du

⩽
∫
[0,1]\Un

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

du+

∫
Un

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

du

⩽ nδ · 2
(
2

e

)dn

+
√
2dn(δ+1)/2.
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Therefore, ∫ 1

0

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

du ⩽ Cn(δ+1)/2, (10)

where the constant C depends only on d.
On the other hand, for some set of points t ∈ [0, 1] of measure 2−dn, each

Rademacher function involved in the sum assumes the value 1, and hence∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ

∥∥∥∥
X

⩾ ∥nδχ(0,2−dn)∥X ⩾ nδϕX(2−dn), (11)

where ϕX is the fundamental function of X. Using successively condition (4),
embedding (7), the embedding L∞ ⊂ X, estimate (10), and the inequality α0 ⩽ δ,
we obtain

ϕX(2−dn) ⩽ n−δ

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ

∥∥∥∥
X

⩽ n−δD

∫ 1

0

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
X

du

⩽ n−δC1

∫ 1

0

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

du ⩽ C2n
−(δ−1)/2 ⩽ C3n

−(α0−1)/2.

Since this inequality holds for all sufficiently large n ∈ N and the function ϕX is
quasiconcave, we have, for all t ∈ [0, 1],

ϕX(t) ⩽ C log−γ0

(
e

t

)
,

where γ0 = (α0 − 1)/2 > 0. Hence, Λ(log−γ0(e/t)) ⊂ Λ(ϕX) ⊂ X, and if γ0 >b/2,
that is, if α0 > b + 1, then the required result holds. In the case γ0 ⩽ b/2 (or,
equivalently, α0 ⩽ b+ 1), we proceed as follows.

According to Blei’s inequalities (see [13], Ch. VII, formula (9.30) and Ch. XIII,
Corollary 29, or [14], formula (1.7)), for the same δ as above, all p ⩾ 1 and u ∈ [0, 1],∥∥∥∥ ∑

ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
p

⩽ Cpβ/2
( ∑

ȷ∈A∩Bn

(rȷ(u))
2

)1/2

= Cpβ/2nδ/2.

Therefore, by the extrapolation description (3) of the exponential Orlicz space
ExpL2/β , we conclude that∥∥∥∥ ∑

ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
ExpL2/β

⩽ Cnδ/2.

Hence, the equality ExpL2/β = M(log−β/2(e/t)) and the definition of the norm in
Marcinkiewicz spaces (see § 2.1) imply that, for all u ∈ [0, 1],( ∑

ȷ∈A∩Bn

rȷ(u)rȷ

)∗

(t) ⩽ Cnδ/2 logβ/2
(
e

t

)
, 0 < t ⩽ 1.
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Combining the last inequality with (9), we have, for all u ∈ Un,( ∑
ȷ∈A∩Bn

rȷ(u)rȷ

)∗

(t) ⩽ Cnδ/2 min

{
n1/2, logβ/2

(
e

t

)}
, 0 < t ⩽ 1. (12)

Next, setting γk+1 = γ0 + γk/β, k = 0, 1, . . . , where still γ0 = (α0 − 1)/2, let us
show that, for each k = 0, 1, . . . ,

Λ

(
log−γk

(
e

t

))
⊂ X. (13)

This embedding holds for k = 0, and so it suffices to verify that (13) with γk
implies (13) with γk+1.

Indeed, from inequalities (11), (7) and (12) we have

ϕX(2−dn) ⩽ n−δ

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ

∥∥∥∥
X

⩽ Dn−δ

∫ 1

0

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
X

du

⩽ Cn−δ

(∫
[0,1]\Un

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
∞

du+

∫
U

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ(u)rȷ

∥∥∥∥
Λ(log−γk (e/t))

du

)

⩽ C · 2
(
e

d

)−dn

+ C ′n−δ/2

(∫ e1−n1/β

0

n1/2 d log−γk

(
e

t

)
+

∫ 1

e1−n1/β
logβ/2

(
e

t

)
d log−γk

(
e

t

))
⩽ C ′′n−(δ/2+γk/β−1/2) ⩽ C ′′n−(α0/2+γk/β−1/2) = C ′′n−γk+1 .

Hence, since the fundamental functions are quasiconcave, we arrive at (13) with
γk+1 in place of γk.

We next note that

γk = γ0

k∑
i=0

1

βi
→ βγ0

β − 1
as k → ∞.

In addition, by the assumption α0 > b+ 1− b/β and β ⩾ 1, and hence

βγ0
β − 1

>
1

2

(
b− b

β

)
β

β − 1
=

b

2
.

By the above relations, γk > b/2 for some sufficiently large k, and now the required
result follows, as observed at the beginning of the proof. This proves Theorem 1.

In the case b = 1, we get the following result.

Corollary 1. Let X be a symmetric space and let d ∈ N. Suppose that A ⊂ ∆d is
an (α, β)-set with α+1/β > 2 such that, for some D > 0 and any finite set A′ ⊂ A,∥∥∥∥∑

ȷ∈A′

rȷ

∥∥∥∥
X

⩽ D

∫ 1

0

∥∥∥∥∑
ȷ∈A′

rȷ(u)rȷ

∥∥∥∥
X

du.

Then ExpL2 ⊂ X .
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In particular, this embedding holds if {rȷ}ȷ∈A is an RUD sequence in X for some
(α− ε, α+ ε)-set A whenever α > 1 and ε > 0 is sufficiently small.

Theorem 2. Let X be a symmetric space and let d ∈ N. Assume that A ⊂ ∆d is
an (α, β)-set, α+ 1/β > 2. Then the following conditions are equivalent:

(a) {rȷ}ȷ∈A is an RUD sequence in X ;
(b) {rȷ}ȷ∈A is an unconditional basic sequence in X ;
(c) {rȷ}ȷ∈A is equivalent in X to the canonical basis in ℓ2 , that is, for some

constant CX ,

C−1
X ∥{aȷ}ȷ∈A∥ℓ2 ⩽

∥∥∥∥∑
ȷ∈A

aȷrȷ

∥∥∥∥
X

⩽ CX∥{aȷ}ȷ∈A∥ℓ2 . (14)

In particular, if α > 1, then for any (α−ε, α+ε)-set A, where ε > 0 is sufficiently
small, conditions (a), (b) and (c) are equivalent.

It is clear that we need to verify only the implication (a)⇒(c). However, this
result is an immediate consequence of Corollary 1 and the following assertion.

Proposition 1. Let X be a symmetric space such that ExpL2 ⊂ X . Then there
exists a constant C ′ such that, for each uniformly bounded D-RUD sequence {xj}j∈N
from X , the following Khintchine type inequality holds:∥∥∥∥∑

j∈N
ajxj

∥∥∥∥
X

⩽ C ′D sup
j∈N

∥xj∥∞ ·
(∑

j∈N
a2j

)1/2

.

Proof. It is known (see, for example, Lemma 3 in [9]) that, for every Orlicz func-
tion M and any measurable function z = z(u, t) defined on [0, 1]× [0, 1],∫ 1

0

∥z(u, · )∥LM ( · ) du ⩽ 2 ess sup
t∈[0,1]

∥z( · , t)∥LM ( · ). (15)

Therefore, from the conditions of the proposition, by applying the Khintchine
inequality to the Rademacher system in the space ExpL2 (see [36], Ch. V, Theo-
rem 8.7, or [6]), we have∥∥∥∥∑
j∈N

ajxj

∥∥∥∥
X

⩽ D

∫ 1

0

∥∥∥∥∑
j∈N

rj(u)ajxj

∥∥∥∥
X

du ⩽ DC

∫ 1

0

∥∥∥∥∑
j∈N

rj(u)ajxj( · )
∥∥∥∥
ExpL2( · )

du

⩽ 2DC ess sup
t∈[0,1]

∥∥∥∥∑
j∈N

rj( · )ajxj(t)

∥∥∥∥
ExpL2( · )

⩽ C ′D ess sup
t∈[0,1]

(∑
j∈N

(ajxj(t))
2

)1/2

⩽ C ′D sup
j∈N

∥xj∥∞ ·
(∑

j∈N
a2j

)1/2

.

This proves Proposition 1, and, therefore, Theorem 2.

Theorem 2 illustrates that the difference in the behaviour of the Rademacher
sequence {rj} and the chaos {rj1rj2}j1>j2 , which was mentioned in the introduction,
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is due to the different combinatorial dimensions of the index sets corresponding to
these systems. Moreover, this result implies that unconditionality of a subsystem
{rȷ}ȷ∈A of the chaos of any order d in a symmetric space X and its equivalence
in X to the canonical basis in ℓ2 are equivalent whenever the corresponding index
set A has exact combinatorial dimension α > 1.

For Orlicz spaces, Theorem 2 can be refined. Namely, if a set A has exact
combinatorial dimension α > 1, then the above conditions (a), (b) and (c) can be
characterized in terms of certain embeddings.

Theorem 3. Let LM be an Orlicz space, d ∈ N. Suppose that a set A ⊂ ∆d has
exact combinatorial dimension α > 1. Then the following conditions are equivalent:

(i) {rȷ}ȷ∈A is an RUD sequence in LM ;
(ii) {rȷ}ȷ∈A is an unconditional basic sequence in LM ;
(iii) {rȷ}ȷ∈A is equivalent in LM to the canonical basis in ℓ2 , that is, for some

constant CM ,

C−1
M ∥{aȷ}ȷ∈A∥ℓ2 ⩽

∥∥∥∥∑
ȷ∈A

aȷrȷ

∥∥∥∥
LM

⩽ CM∥{aȷ}ȷ∈A∥ℓ2 ;

(iv) LM ⊃ ExpL2/α .

Proof. The equivalence of conditions (i), (ii) and (iii) is secured by Theorem 2. So,
it only remains to verify that (iii) is equivalent to (iv).

Assume first that embedding (iv) holds. Applying again Blei’s inequalities
(see [13], Ch. VII, formula (9.30) and Ch. XIII, Corollary 29, or [14], formula (1.7)),
we have, for all p ⩾ 1 and any sequence {aȷ}ȷ∈A,∥∥∥∥∑

ȷ∈A
aȷrȷ

∥∥∥∥
p

⩽ C(α, d)pα/2
(∑

ȷ∈A
a2ȷ

)1/2

.

Therefore, by the embedding LM ⊃ ExpL2/α and the extrapolation description of
the space ExpL2/α (see (3)), we have∥∥∥∥∑

ȷ∈A
aȷrȷ

∥∥∥∥
LM

⩽ C

∥∥∥∥∑
ȷ∈A

aȷrȷ

∥∥∥∥
ExpL2/α

⩽ C ′
(∑

ȷ∈A
a2ȷ

)1/2

,

which gives the right-hand side inequality in (iii). The left-hand side of this inequal-
ity holds in each symmetric space X (because X ⊂ L1, see also Lemma 6 in [9]).
This proves the implication (iv)⇒(iii).

Now let us verify the implication (iii)⇒ (iv). By the assumption, the set A has
exact combinatorial dimension α, and hence, for some constant C > 0 and each
n ∈ N, there exists a set Bn := B1×B2×· · ·×Bd such that |Bj | = n, j = 1, 2, . . . , d,
and

C−1nα ⩽ |A ∩ Bn| ⩽ Cnα.

Now using (11) (with α instead of δ) and condition (iii), we have

ϕLM
(2−dn) ⩽ Cn−α

∥∥∥∥ ∑
ȷ∈A∩Bn

rȷ

∥∥∥∥
LM

⩽ Cn−αCM

( ∑
ȷ∈A∩Bn

1

)1/2

⩽ C ′n−α/2.
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Consequently, since ϕLM
is quasiconcave,

ϕLM
(t) ⩽ C log−α/2

(
e

t

)
, t ∈ (0, 1],

with some constant C. We have ϕLM
(t) = 1/M−1(1/t), and hence by the last

inequality,

logα/2
(
e

t

)
⩽ CM−1

(
1

t

)
,

or, equivalently,

M

(
C−1 logα/2

(
e

t

))
⩽

1

t
.

As a result, writing C−1 logα/2(e/t) = u, we arrive at the inequality

M(u) ⩽ e(Cu)2/α−1 for u ⩾ 1.

By the definition of the norm in Orlicz spaces (see § 2.1), we have LM ⊃ ExpL2/α,
as claimed. This completes the proof of Theorem 3.

§ 4. Concluding remarks

4.1. On the RUC property of uniformly bounded Bessel systems in sym-
metric spaces. According to Theorem 1, under certain conditions on density
characteristics of an index set, the assumption that the corresponding subsystem
of the Rademacher chaos has the RUD property in a symmetric space X implies
that X is “far” from the space L∞. In a certain sense, the opposite assertion is
valid for the random unconditional convergence (RUC) property (see § 2.3) of such
a subsystem. We obtain this result as a consequence of a more general fact related
to uniformly bounded Bessel systems of functions. A similar assertion is known to
hold under the extra conditions that X ⊂ L2 and the system is orthonormal (see
Proposition 2.1 in [31] and also Corollary 1.4 in [28]).

Recall that a bounded basic sequence {xj}j∈N in a Banach space X is a Bessel
system if, for some constant C(X) and any aj ∈ R, j ∈ N,

(∑
j∈N

a2j

)1/2

⩽ C(X)

∥∥∥∥∑
j∈N

ajxj

∥∥∥∥
X

.

Proposition 2. Let X be a symmetric space such that ExpL2 ⊂ X . Then every
uniformly bounded Bessel sequence {xj}j∈N has the RUC property in X .

Proof. By the conditions of the proposition, inequality (15) for LM = ExpL2 and
using the Khintchine inequality in the space ExpL2 (see [36], Ch. V, Theorem 8.7,
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or [6]), we have∫ 1

0

∥∥∥∥∑
j∈N

rj(u)ajxj

∥∥∥∥
X

du ⩽ C ′
∫ 1

0

∥∥∥∥∑
j∈N

rj(u)ajxj( · )
∥∥∥∥
ExpL2( · )

du

⩽ 2C ′ ess sup
t∈[0,1]

∥∥∥∥∑
j∈N

rj( · )ajxj(t)

∥∥∥∥
ExpL2( · )

⩽ C ′′ ess sup
t∈[0,1]

(∑
j∈N

(ajxj(t))
2

)1/2

⩽ C ′′ sup
j∈N

∥xj∥∞ ·
(∑

j∈N
a2j

)1/2

⩽ C ′′C(X) sup
j∈N

∥xj∥∞ ·
∥∥∥∥∑
j∈N

ajxj

∥∥∥∥
X

,

proving Proposition 2.

Note that {rȷ}ȷ∈∆d is an uniformly bounded orthonormal sequence on [0, 1]. Now
from Proposition 2 we have the following result.

Corollary 2. The system {rȷ}ȷ∈∆d is an RUC sequence in each symmetric space X
with ExpL2 ⊂ X .

4.2. Asymptotic independence of a fractional Rademacher chaos. Let
d = 3, A = {(i, j, i + j), 1 ⩽ i < j}. It is easily seen that A is a (2, 2)-set.
Therefore, by Theorem 3,∥∥∥∥∑

ȷ∈A
aȷrȷ

∥∥∥∥
ExpL

≍
∥∥∥∥{aȷ}ȷ∈A

∥∥∥∥
ℓ2

and
sup

{∥∥∥∥∑
ȷ∈E

aȷrȷ

∥∥∥∥
ExpLγ

: ∥{aȷ}ȷ∈E∥ℓ2 ⩽ 1, E ⊂ A is finite
}

= ∞

for every γ > 1. Moreover, if AN := A∩{1, 2, . . . , N}3, where N ∈ N, N ⩾ 3, then
the sums

SN := |AN |−1/2
∑
ȷ∈AN

rȷ

are normalized in L2, and, by Theorem 1.5 in [14],

sup
N

∥SN∥p ≍ p, p ⩾ 1.

Consequently, (3) implies

inf
{
γ : sup

N
∥SN∥ExpLγ = ∞

}
= 1.

The last relation can be considered as a consequence of a certain “interdepen-
dence” of the functions rȷ, ȷ ∈ A. We claim that, at the same time, the sums SN

have asymptotically standard normal distribution corresponding to the space
ExpL2 ⫋ ExpL. Hence the functions rȷ, ȷ ∈ A are asymptotically independent like
the usual Rademacher functions. This “divergence” in estimates for the moments
of a Rademacher fractional chaos and its asymptotic behaviour was previously
observed in [14]. To justify the last assertion, we will use Theorem 1.7 from [14].
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Let
A∗

N,k := {(i, j,m) ∈ AN : k ∈ {i, j,m}}, k ∈ N.

We also consider the set A♯
N ⊂ AN × AN consisting of the pairs ((i, j, i + j),

(k, l, k + l)) of elements of the set AN such that

{i, j, i+ j} ∩ {k, l, k + l} = ∅ (16)

and
{i, j, i+ j, k, l, k + l} = {i1, j1, i1 + j1, k1, l1, k1 + l1} (17)

for some (i1, j1, i1 + j1), (k1, l1, k1 + l1) ∈ AN satisfying the conditions

(i1, j1, i1 + j1) ̸= (i, j, i+ j) and (i1, j1, i1 + j1) ̸= (k, l, k + l). (18)

To prove that the sums SN have asymptotically standard normal distribution,
it suffices to verify that

lim
N→∞

max
k

|A∗
N,k|

|AN |
= 0 and lim

N→∞

|A♯
N |

|AN |2
= 0

(see Theorem 1.7 in [14]). The first of these equalities is a consequence of the
obvious estimates |A∗

N,k|⩽3N and |AN | ≍N2. To verify the second claim it suffices
to show that A♯

N = ∅.
Assume that ((i, j, i+ j), (k, l, k+ l)) ∈ A♯

N , that is, (16) and (17) hold for some
elements (i1, j1, i1 + j1), (k1, l1, k1 + l1) ∈ AN satisfying (18). Let

V := {i, j, i+ j, k, l, k + l} = {i1, j1, i1 + j1, k1, l1, k1 + l1}.

Then
max{x : x ∈ V } = max{i+ j, k + l} = max{i1 + j1, k1 + l1}

and
ΣV = 2(i+ j + k + l) = 2(i1 + j1 + k1 + l1),

where ΣV is the sum of all elements of the set V . Therefore, we either have
i+ j = i1 + j1, k + l = k1 + l1, or i+ j = k1 + l1, k + l = i1 + j1, whence

{i, j, k, l} = {i1, j1, k1, l1}.

By the assumption, the numbers i, j, k, l, i+j, k+ l are pairwise distinct (see (16)),
and so we have

i+ k ̸= i+ j, i+ l ̸= i+ j, j + k ̸= i+ j, j + l ̸= i+ j, k + l ̸= i+ j.

But hence the equality i1 + j1 = i+ j gives i1 = i, j1 = j, which contradicts (18).
Similarly, from the equality i1 + j1 = k + l we have i1 = k, j1 = l, which also
contradicts (18).
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