Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/322857
Заглавие документа: | C∗-Algebras Associated to Transfer Operators for Countable-to-One Maps |
Авторы: | Bardadyn, К. Kwasniewski, B.K. Lebedev, A.V. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Дата публикации: | 2024 |
Издатель: | Birkhauser |
Библиографическое описание источника: | Integr. Equ. Oper. Theory 2024; 96:25 |
Аннотация: | Our initial data is a transfer operator L for a continuous, countable-to-one map φ:Δ→X defined on an open subset of a locally compact Hausdorff space X. Then L may be identified with a ‘potential’, i.e. a map ϱ:Δ→X that need not be continuous unless φ is a local homeomorphism. We define the crossed product C0(X)⋊L as a universal C∗-algebra with explicit generators and relations, and give an explicit faithful representation of C0(X)⋊L under which it is generated by weighted composition operators. We explain its relationship with Exel–Royer’s crossed products, quiver C∗-algebras of Muhly and Tomforde, C∗-algebras associated to complex or self-similar dynamics by Kajiwara and Watatani, and groupoid C∗-algebras associated to Deaconu–Renault groupoids. We describe spectra of core subalgebras of C0(X)⋊L, prove uniqueness theorems for C0(X)⋊L and characterize simplicity of C0(X)⋊L. We give efficient criteria for C0(X)⋊L to be purely infinite simple and in particular a Kirchberg algebra. |
URI документа: | https://elib.bsu.by/handle/123456789/322857 |
DOI документа: | 10.1007/s00020-024-02774-7 |
Scopus идентификатор документа: | 85201963832 |
Финансовая поддержка: | This work was supported by the National Science Centre, Poland, Grant number 2019/35/B/ST1/02684 |
Лицензия: | info:eu-repo/semantics/openAccess |
Располагается в коллекциях: | Кафедра веб-технологий и компьютерного моделирования (статьи) |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
s00020-024-02774-7.pdf | 838,36 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.