Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306251
Title: Multimodal Deep Regression on TikTok Content Success
Authors: Wong, Louis
Salih, Ahmed
Song, Mingyao
Xu, Jason
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2023
Publisher: Minsk : BSU
Citation: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 35-41.
Abstract: Content creators grapple with the challenge of predicting if their investments will lead to increased viewership and audience growth on social media platforms. By employing advanced techniques in video encoding and natural language processing, we construct a powerful multimodal ensemble model for accurately predicting video success. Our preliminary results demonstrate the model’s effectiveness in predicting video virality
URI: https://elib.bsu.by/handle/123456789/306251
ISBN: 978-985-881-522-6
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
35-41.pdf501,28 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.