
35

Multimodal Deep Regression on TikTok Content

Success

Louis Wong

College of ComputingGeorgia

 Institute of Technology

lwong64@gatech.edu

Ahmed Salih

 College of Computing Georgia

Institute of Technology

asalih6@gatech.edu

Jason Xu

College of Computing Georgia

Institute of Technology

jxu623@gatech.edu

Mingyao Song

 DeGroote School of Business

McMaster University

songm45@mcmaster.ca

Abstract—Content creators grapple with the challenge of

predicting if their investments will lead to increased viewership

and audience growth on social media platforms. By employing

advanced techniques in video encoding and natural language

processing, we construct a powerful multimodal ensemble

model for accurately predicting video success. Our preliminary

results demonstrate the model’s effectiveness in predicting video

virality

Keywords—virality, multimodal, predicting.

I. INTRODUCTION

The digital content creation landscape keeps evolving,
challenging creators to predict video success and audience
growth. Opaque algorithms and unpredictable interactions on
platforms like TikTok complicate matters. Diverse
approaches and models have been explored to predict video
success and understand content virality.

To address YouTube viewership challenges, Liu et al. [15]
proposed a Precise Wide-and-Deep Learning model,
accurately predicting viewership while interpreting feature
effects. In the context of TikTok, researchers [7] introduced a
deep learning model to predict user participation in challenges
by learning latent user and challenge representations. Salvador
et al. [3] used attention mechanisms to improve video
recognition models for human action recognition. A multi-
modal fusion framework [5] integrated different modalities
for effective short video understanding and recommendation.
To describe videos, a deep neural network with multi-modal
fusion [6] learned joint representations for video description
tasks. Predicting Instagram popularity involved convolutional
neural networks and long short-term memory networks [14],
exploring spatial and temporal information. Another work
used neural networks and regression analysis [9] to predict
popularity by comparing aesthetics and social metadata.
While these contributions are significant, the challenge of
effectively integrating diverse modalities, like visual and
audio data, remains for multi-modal fusion research. Striking
the right balance and seamless integration between modalities
are crucial for successful fusion techniques.

Two primary fusion approaches in multimodal learning
are early fusion, which concatenates features at the input level,
and late fusion, which aggregates predictions at the decision
level [12]. Performance comparison between these
approaches depends on several factors such as multimodal
data characteristics, task complexity, interdependence
between modalities, feature quality, network architecture,
dataset size, and labeled data availability [12, 4, 2, 13]. As
there is no universally superior fusion approach, each method

can be more effective in specific scenarios. This study adopts
the late fusion approach, considering unique project factors,
as it effectively leverages modality strengths, capturing
complementary information and improving performance.

Our study aims to predict video virality using a
multimodal ensemble model. Beyond predicting video content
creators’ success, this project validates the use of multimodal
approaches, surpassing traditional unimodal methods.
Validating this approach emphasizes the potential for
enhancing predictive ability by analyzing multiple streaming
modalities. Our work showcases the promise of the
multimodal era, demonstrating how leveraging diverse data
modalities can lead to innovative solutions and deeper
insights..

II. APPROACH

2.1 Data collection

The data collection process involved scraping video data
from TikTok using a custom-built Selenium scraper running
on a Chromium browser. The scraper was designed to
randomly collect videos across various hashtag topics,
ensuring a diverse representation of content. The selected
hashtag topics included Sports, Dance, Entertainment,
Comedy and Drama, Autos, Fashion, Lifestyle, Pets and
Nature, Relationships, Society, Informative, and Music. This
approach aimed to capture a wide range of video content to
ensure the model’s generalizability. In total, the data
collection effort yielded approximately 1,100 videos, each in
.mp4 format, resulting in a substantial dataset with a total size
of 6.8 GB. To facilitate further analysis and model training,
each video was assigned a unique video ID tag for reference
and data mapping. Alongside the video files, the dataset also
includes JSON data containing relevant metadata for each
video, such as the video ID tag and its corresponding TikTok
URL. Additionally, the video view count on TikTok was
recorded as an essential metric for evaluating video creator
success

First, confirm that you have the correct template for your
paper size. This template has been tailored for output on the
A4 paper size. If you are using US letter-sized paper, please
close this file and download the Microsoft Word, Letter file.

2.2 Data Preprocessing

The template is used to format your paper and style the
text. All margins, column widths, line spaces, and text fonts
are prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This

36

measurement and others are deliberate, using specifications
that anticipate your paper as one part of the entire proceedings,
and not as an independent document. Please do not revise any
of the current designations.

2.2.1 Visual Preprocessing

The visuals for the video are extracted using TorchVision,
converting the raw .mp4 format into tensors. The tensors are
sized as (Channels, Frames, Height, Width). Here, ’Channels’
represents RGB (3), ’Frames’ varies greatly depending on the
length of the video; some videos are as short as a few seconds,
some are as long as 10 minutes. However, with a frame rate of
60fps, that can be

60 FPS · 60 Seconds · 10 Minutes = 3,600frames

For ’Height’ and ’Width’, most videos are 1024 by 576
pixels respectively, according to mobile application standards.
Nevertheless, there are also various different heights and
widths as well.

3(C) · 3600(D) · 1080(H) · 576(W) = 6,718,464,000

The tensor size shown is a single input tensor. With the
inclusion of batches leading to further increases in the tensor
size. These tensors were too large to train on our accessible
hardware. Therefore, we strategized to use multiple
techniques to reduce the computational cost by decreasing the
amount of information. We explored several downsampling
techniques such as trimming the video length, averaging the
tensors, skipping frames, and rescaling the video height and
width. After several attempts, we chose to skip frames and
rescale the pixels ad it made it feasible to run on our available
hardware. For other size format videos, we adjusted the height
and width to accommodate the mobile aspect ratio to a
standard format of 1024 by 574, we first rescaled to this size.
Then, filled the remaining values with 0. This approach
created more uniformity for the model, as most models only
accept input with a fixed window size.

2.2.2 Audio Preprocessing

We extracted audio from the video datasets using FFmpeg.
The extracted audio is then converted to .wav format, which
is solely for audio, and saved to an audio directory with an ID
tag as a naming convention. This setup was designed for the
audio embedding portion of this project. We leverage the
Whisper framework to transcribe audio into sentences and
obtain the corresponding word embeddings.

2.2.3 Target Values

The target labels are scraped metadata representing the
counts of video views. However, these labels are rounded to
’30.58M’ or ’75.8K’, etc. They are not perfectly decimal
metrics, but they should be sufficient for our needs. We clean
up these metrics to a floating point format in thousands (K),
for example ’30.3’, to unify the target format before we feed
it into our model. The targets can range from 0 to 10,000s.
However, in later experiments, we decided to standard-
normalize these metrics, discussed in Section 3.2.2.

2.3 Multimodal Architecture

Our approach involves data preparation and multimodal
deep regression modeling. The data preparation process
includes scraping video data from TikTok, audio extraction,
and meticulous organization of visual tensors for efficient
integration into the model. For audio analysis, we leverage the
open-source Whisper model to transcribe audio content and

obtain audio embeddings that capture the semantic meaning
of the audio. The heart of our model lies in the visual
embeddings generated through an unsupervised pretraining
process using a ConvLSTM Autoencoder. This process
encodes the context of the video into compact and informative
embeddings that retain essential spatial and temporal features.
Subsequently, the visual and audio embeddings are
concatenated and fed into a Transformer-based regression
model for multimodal analysis. The late fusion technique
combines the visual and audio data, enabling the model to
learn the semantic and nonlinear relationships between the
two modalities. These relationships are important for
understanding what makes a video successful. The
Transformer model, with its self-attention layers and
feedforward neural networks, captures complex patterns and
relationships within the data.

The video is first broken down into visual and audio tracks,
with our primary focus on the video visual. The video visual
will undergo an autoencoder process, utilizing a convolution-
based network architecture, ConvLSTM Autoencoder, to
unsupervised pre-training from scratch. This process encodes
the context of the video into embedding vectors. Subsequently
for the audio, we leverage a pretrained model, the open-source
Whisper, to create a transcript for the audio, supplementing
the project. The visual embeddings and audio embeddings are
then extracted from the visual and audio branches,
respectively. The embeddings are then concatenated and input
into a Transformer-based regression model.

2.3.1 Visual Embedding

To generate compact and informative visual embeddings,
we employ an unsupervised pretraining method using a
ConvLSTM Autoencoder. The ConvLSTM Autoencoder is
introduced by Shi et al.[11] and Nielsen [8]. This architecture
comprises a series of ConvLSTM Cells, which are a
combination of Convolutional and Long Short-Term Memory
(LSTM) layers. The ConvLSTM Cells acts both as an encoder
and a decoder, capturing the spatial features via the
convolutional layers and temporal dependencies through the
LSTM layers. Finally, the decoder passes through 3D
convolutional layers to reconstruct the sequences of visuals
(video tensors). This enables the Autoencoder to retain
important contextual information from the video data, while
also reducing dimensionality to create compact embeddings at
the encoder output. During training, the Autoencoder takes
video frames as input and tries to reconstruct them at the
output. The difference between the original and reconstructed
frames is quantified using the Mean Squared Error (MSE) loss
function. Through backpropagation, the Autoencoder adjusts
its weights and biases to minimize this reconstruction error,
thus learning to capture meaningful patterns in the video data.
The trained Autoencoder is evaluated thoroughly over
multiple epochs to ensure that it learns robust and meaningful
embeddings. The embeddings generated by the Autoencoder
represent the visual context of the video. These embeddings
condense the raw visual data into a more informative and
compact representation, which is crucial for downstream
modality fusion.

2.3.2 Audio Speech Embedding

Audio speech embeddings are obtained using the
opensource Whisper model through unsupervised pretraining.
Whisper is a powerful automatic speech recognition (ASR)
system developed by OpenAI to convert spoken language into
text. First, the audio is extracted from the video dataset, and

37

then Whisper transcribes the audio dialog, producing textual
transcripts that capture essential information from the spoken
content. These textual outputs serve as audio embeddings,
effectively encapsulating the semantic meaning and
characteristics of the audio. Utilizing the preexisting Whisper
model for audio embedding generation offers several
advantages. The Whisper model is already trained on
extensive speech data, making it effective in understanding
diverse spoken language patterns. This saves the effort and
time required to train an ASR system from scratch, making the
process more efficient [10]. Subsequently, the resulting audio
embeddings play a pivotal role in audio speech analysis. The
audio speech embeddings can enrich context comprehension
in downstream modals.

2.3.3 Dual Transformer-based Regression

A Transformer-based ensemble regression is employed to
perform multimodal deep regression by combining visual and
audio data using a late fusion technique. The ensemble model
consists of two primary components: a Transformer model for
visual embedding and another Transformer model for audio
embedding. Both models exploit the Transformer architecture,
a series of Transformer encoder blocks, which heavily relies
on the self-attention mechanism [1]. These models accept
visual and audio embeddings as inputs respectively. They
process these inputs using the Transformer to capture complex
patterns and relationships within the data. Given the unique
shapes and sizes of the visual and audio embeddings, it’s
challenging to consolidate the information into a single
transformer network. Therefore, we introduce a dual
transformer network. This configuration accommodates each
modality, allowing the network to learn each output
separately, and subsequently discover the relationship with the
regression problem.

2.4 Loss Function

The regression models and auto-encoder are both trained
using the MSE loss function, which serves as a measure of the
discrepancy between the model’s predicted values and the
actual ground truth value. The primary objective is to
minimize this while the auto-encoder will reduce the
reconstructed pixel metric loss, the Tranformer-based
regression will reduce loss from prediction to truth success
metrics. The MSE loss function calculates the average squared
difference between the predicted values and the actual values.
By squaring the differences, it penalizes larger errors more
severely, emphasizing the importance of accurate predictions
across all data points. MSE loss functions are defined as:

2

1

1
ˆ() .

n

i i

i

MSE y y
n =

= −

Beside MSE, we later also introduce Mean Absolute Error
(MAE) to our model, since it does not heavily penalize large

prediction errors, which is beneficial in cases where outliers
in the data may cause excessive influence on the model
training, we later discuss this further in Section 3.2.3 . MAE
loss functions are defined as:

1

1
ˆ .

n

i i

i

MAE y y
n =

= −

Where n is the total number of samples in the dataset. yi
represents the actual value of the success metric for the ith
batch of videos. yˆi represents the predicted value of the
success metric or pixel values for the ith batch of videos.

2.5 Implementation and Hardware

The models primarily utilized the PyTorch library, with
Torch-vision and Scikit-learn employed for preprocessing.
We also forked the Whisper project for audio transcript
processing and used a forked version of Swin Transformer 3D
from haofanwang’s repository. Training implementations
were executed on local machines equipped with NVIDIA
RTX 2070 Super/3080 GPUs, using CUDA. Initially, we
faced some challenges due to the size of the tensors, as the
GPUs had limited VRAM capacities. Consequently, some
early training attempts failed due to exceeding VRAM
memory. In the later phases, we primarily used CPUs in
conjunction with physical RAM, and we also allocated
additional virtual memory to accommodate the size of the
visual tensors. The code for this project can be found in the
Multimodal-Deep-Regression GitHub repository. The model
and functional modules were developed using Python, and the
various experiments were set up using Jupyter Lab/Notebook.
Please refer to ’The Multimodal Final.ipynb’ for the setup
guide and detailed installation instructions to rerun the
experiments. The required dependencies for this project can
be found in the requirements.txt file of the GitHub repository.

III. TRAINING AND EXPERIMENTS

In the experiment, we first pretrained the Convolutional
LSTM Autoencoder to an optimal hyperparameter setting and
stored the training weight. Then we applied the Transformer
ensemble model along with Whisper embedding input for
regression prediction. As this is a regression prediction task,
we evaluated the result using the common MSE metric. Since
this is a new dataset, there isn’t a preestablished performance
benchmark to reference. Therefore, we decided to compare
with two baseline models. The first is a vanilla 3D convolution
model, and the second is a state-ofthe-art pretrained SWIN-
Transformer 3D, as referenced in Swin Transformer:
Hierarchical Vision Transformer using

Shifted Windows. The SWIN-Transformer is developed
by Microsoft. The Swin Transformer utilizes shifted windows
to adapt the transformer architecture for computer vision use
cases [9]. The key design element for the Swin Transformer is
the shifting windows between consecutive self-attention
layers bridging between the layers which connects them [9].
Furthermore, we explored an alternative approach by
narrowing down the regression task to classification using
quantile ranges. The video data was split into a training set and
a validation set, with 800 videos in the training set and 200
videos in the validation set. Lastly, we held out 100 videos in
a separate set for final testing.

Fig.1. The multimodal model architecture

https://github.com/haofanwang/video-swin-transformer-pytorch
https://github.com/haofanwang/video-swin-transformer-pytorch
https://github.com/GiggleSamurai/Multimodal-Deep-Regression
https://github.com/GiggleSamurai/Multimodal-Deep-Regression
https://github.com/GiggleSamurai/Multimodal-Deep-Regression
https://github.com/GiggleSamurai/Multimodal-Deep-Regression/blob/main/requirements.txt
https://arxiv.org/pdf/2103.14030.pdf
https://arxiv.org/pdf/2103.14030.pdf
https://arxiv.org/pdf/2103.14030.pdf
https://arxiv.org/pdf/2103.14030.pdf
https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer

38

3.1 Convolutional LSTM Autoencoder

The initial phase of the experiments focuses on training the
Convolutional LSTM Autoencoder, a crucial component
responsible for learning a compact and meaningful
representation of the input video data. The Autoencoder
follows an unsupervised learning approach, with the primary
objective of reconstructing the original input from the learned
latent space representation. The following key parameters and
settings are employed during this training phase: Before
training, the video data undergoes preprocessing steps to
prepare it for the model. The ’Frame Skip’ parameter is
utilized to determine how many frames to skip during the
preprocessing stage, effectively reducing the temporal depth
of the video. Additionally, the ’Shrink’ parameter is applied
to scale down the resolution of each frame, resulting in a
reduced (Height x Width) dimension. Frame skipping and
shrinking were two techniques we chose to reduce the
computational and storage requirements while maintaining
essential information. We were careful about choosing the
degree of shrinkage and number of frames to skip given that
too high of either might lead to a loss of important visual
details and temporal information. We decided on shrinking by
a factor of 8. Although this resulted in significantly reduced
frame clarity, subjects within the frames remained
identifiable. The number of frames to skip was set to 200,
which was feasible to run experiments without each epoch
taking a significant amount of time and computational
memory resources.

3.1.1 Handling Sequential Visual Tensors

The input tensor size fed to the model after processing is
(Batch, Channels, Frames, Height, Width), where ’Batch’
refers to the size of the training batches, ’Channels’ represents
RGB (3), ’Frames’ varies greatly depending on the length of
the video, and ’Height’ and ’Width’, after preprocessing, are
1024 by 576 respectively. Inserting video sequences of
various depths into the model presents a challenge because
most CNN models are not designed to account for varying
depths. To address this, we have implemented several
techniques, including fixed size padding, max sequence batch,
and average pooling techniques. First, the most
straightforward method is to pad all tensors to a fixed depth
size, using the maximum depth from the dataset and padding
the shorter ones with zeros. Second, we can handle this at the
batch level, retaining the varying depths as long as the model
design can manage variable sequences, such as with LSTM
layers. Third, we can use average pooling techniques to
average out to a fixed size output. However, this is less than
ideal as it may lead to loss of some temporal information. In
our ConvLSTM model, we primarily use the max sequence
batch technique, although we also utilize other methods
depending on the architecture design throughout the project.

3.1.2 Convolutional Normalization

In this experiment, we utilized normalization, which
reduced the original pixel value range from 0 to 255 down to
a range of 0 to 1 using the Min-Max scaler. However, after a
few trials, we observed a noticeable reduction in the speed of
loss reduction from each epoch. We found that normalization
in the ConvLSTM Autoencoder resulted in higher overall loss
compared to trials that did not use normalization. We suspect
that the cause of this phenomenon might be due to the
sensitivity of the values during training introduced by
normalization, which may require further adjustments in
learning rate. After comparing results, we decided to use non-

normalized visual tensors for the ConvAutoencoder since it
yielded significantly better results in fewer epochs.

3.2 Multimodal Ensemble Model

The second part of the experiments involves training the
Ensemble Model, a more complex architecture that combines
the outputs from the Visual Transformer and the Audio
Transformer with the learned visual and audio embeddings
from the pre-trained Convolutional LSTM Autoencoder. The
Ensemble Model is designed to effectively fuse information
from both visual and audio modalities and predict the output
values. The parameters and settings applied during this
training phase can be found in Table 1.

In addition to the visuals, the Ensemble Model requires
input from the audio modality. The ’extract audio’ function is
called to extract audio from the video dataset and saves it in
.wav format. Subsequently, the ’extract embeddings’ function
is used to transcribe the audio dialogue and extract Low-Level
Modulation Spectrogram (LLMs) embeddings from the audio
files. These LLMs embeddings are crucial for training the
Audio Transformer within the Ensemble Model. The sizes of
the audio tensors are output as [1, 7, S, 512], where ”S”
represents a variable-length dimension that can range from 1
to several thousands. In order to reduce the computational
intensity of the model, an average pooling technique was
deployed to reduce the dimension of S to 1, while keeping the
other dimensions as originally specified before input to the
transformer. While this might result in some loss of temporal
information regarding sub-parts in speech, we are more
interested in the global wording context to aid our model
prediction.

3.2.1 Dual Transformer Late Fusion

The Ensemble Model consists of two transformer-based
sub-models: the Visual Transformer and the Audio
Transformer. Both sub-models share common hyper-
parameters, including the number of attention heads, hidden
dimension, and the number of transformer layers. Specifically,
the ’Number of Attention Heads’ is set to 4, providing the
models with multiple attention mechanisms to focus on
relevant visual and audio features. The ’Hidden Dimension’ is
set to 32, representing the size of the hidden layer in each
transformer. Finally, the ’Number of Transformer Layers’ is
set to 2, determining the depth and number Transformer
encoder blocks [1] of the transformer-based architectures.

Throughout training, the losses on both the training and
validation sets are recorded to assess the Ensemble Model’s
performance. The ensemble transformer regressor model has
a total of 836,484,738 trainable parameters.

3.2.2 Standard Normal Scalar

The nature of this problem made it difficult to generate
accurate predictions. Initially, the regression model seemed to
predict a constant result around the training mean, leading us
to suspect that the model was tending to underfit the problem
space. Later, we introduced standard normalization to the
target values. Originally, these target values could range
between 0 to 10,000s. The standard normalization not only
shortened our training time of the Transformer regression
model, but also produced results with better variations, closely
resembling the high and low values in the validation set.
Consequently, we observed improved performance in terms of
reduced MSE loss.

39

3.2.3 Impact of Outliers on MSE and MAE

As mentioned above, we used MAE as part of our loss
function. Initially, we only deployed the common regression
metric MSE as our main loss function. After a few trials, we
observed a pattern where MSE was predicting higher values
than most of the targets, seen in Figure 2.

 Fig. 2. MSE loss function versus MAE loss function

Since there were a few outliers with high amounts of video
views, the norm of the other errors were made insignificant
when MSE squared the loss. However, these outliers didn’t
appear often. When we switched to MAE, we saw significant
improvement in generalization, surprisingly even when we
evaluated using MSE for both the validation set and the
holdout set. Thus, we implemented MAE loss as part of our
strategy.

IV. RESULTS

4.1 Convolutional LSTM Autoencoder Results

Initially, we set our Convolutional LSTM Autoencoder
with increasingly higher hyperparameters, hoping that it could
produce better results. After some trials, we realized that using
a smaller model by reducing the hidden size over a high
number of epochs was extremely effective in training our
ConvLSTM Autoencoder. The total trainable parameters of
this model is 1,041,859. Notably, the model showed a
considerable decrease in loss after each epoch. During
training, we also inspected the visual samples. Noticeably, the
reconstructed images continued to improve as the number of
epochs increased and the loss decreased, seen in Figure 3.

Samples of various frames predicted by the ConvLSTM
Autoencoder model can be seen in Figure 4.

After training the Convolutional LSTM Autoencoder, we
analyzed and visualized the losses on the training and
validation sets on a graph. The graph shows a trend of
continually decreasing losses on both the training and
validation sets over the epochs. This indicates that the
Autoencoder is effectively learning to reconstruct the input
video frames and captures essential visual features in the
learned latent space representation. The decreasing loss values
affirm that the Autoencoder has learned to produce accurate
reconstructions of the original video frames.

To further evaluate the quality of the Autoencoder’s
reconstructions, a random sample inspection is performed on
the validation set. The actual video frames and their
corresponding reconstructed versions are visually compared.
The results illustrate that the Autoencoder successfully
preserves critical details and spatial structures in the frames,
indicating its proficiency in reconstructing visual information.

A series of additional experiments revealed that the
number of frames to skip has a significant impact on the
performance of the autoencoder. When the number of frames

to skip was reduced from 200 to 100, the validation loss of the
autoencoder decreased by approximately 300%, as seen in
Figure 5.

Fig. 3. Training After Epochs.

Fig. 4. Video reconstruction samples from ConvLTSM Autoencoder

Fig. 5. Losses in comparison for Autoencoder visual depth

40

 Figure 6 demonstrates that the autoencoder was able to
reconstruct the original image much better with the lower
frame skip.

Fig. 6. Autoencoder reconstruction comparison.

However, this experiment was computationally expensive,
requiring 80 epochs, each of which took an average of 40
minutes to complete. This resulted in a total runtime of over 2
days. Therefore the rest of experiments are run using 200
frame skips.

4.2 Multimodal Ensemble Regression Results

With our test set constructed of 100 randomly sampled
videos the Multimodal Ensemble Model was able to
outperform all models except for the Swin Transformer
(w/Scaled Target). From the MAE we are able to gain further
insights from the model’s predictive ability and we observed
the Multimodal Ensemble Model was able to better handle
non-outlier predictions compared to the Swin Transformer
(w/Scaled Target). The results showcased the architecture
which features a combination of an Auto-encoder and
Transformer was able to begin to learn a function that is not
solely over-biased in over estimating the view count due to the
nature of the dataset that includes a small percentage of video
gaining immense amount of views. The table below shows the
breakdown between the different models and performance
metrics.

TABLE I. MODEL TEST PERFORMANCE

Model MSE MAE

SwinTransformer 83.96M 4.73k

SwinTransformer(ScaledTarget) 70.2M 5.39k

CNN3D 82.97M 4.87k

MultimodalEnsembleModel 72.96M 4.89k

Given the nature of the dataset, which is a sample set of
videos, there’s a probability that any dataset used will exhibit
some heteroscedasticity. This is because TikTok, as a
platform, has a diverse range of videos with varying levels of
popularity. Videos can range from being part of viral trends to
more specialized content. To handle heteroscedasticity, MAE
might be a better metric. From this, we can observe that the
Swin Transformer performs well with nonscaled values, while
it suffers when using scaled values. The Multimodal
Ensemble Model was trained using normalized scaled values
and tends to achieve balanced results in both MSE and MAE.

4.3 Multimodal Classifier Variation Results

These classes serve as proxies for the expected success of
videos. For instance, videos in class 4 are expected to generate
more views than 75% of all videos. In simpler terms, we
experimented with predicting the quartile of viewership in
which a video might land. This mapping could also be useful

for content creators trying to predict whether their video is
likely to go viral or fall into the least-viewed quartile. The
quartile thresholds were derived from the training set of videos
and applied to both the validation and test sets. To further
illustrate the complexity of this problem, even when the
problem is modeled as classification, all the different
algorithms recorded an accuracy of under 30%. The
algorithms tend to overfit the noise rather than making
meaningful predictions. The simplest model, CNN 3D,
performed the best, followed by the Swin Transformer with an
accuracy of 27%. Due to time limitations, we didn’t explore
and train the ensemble model classification as extensively,
which resulted in a score of 23%. However, it’s worth noting
that the parameters used in this experiment differed from those
in the regression experiment. Overall, the classification
approach may suffer from the imbalance of the classes. As a
solution, we could introduce further balancing techniques, or
even better, ensure more balanced data collection, which
might yield better results in future experiments.

V. CONCLUSION

In conclusion, the results have paved the way for a
successful series of experiments in deep learning regression
for predicting video success metric. The Multimodal
Ensemble Architecture proposed in this paper demonstrates its
ability to outperform both a Vanilla CNN 3D and a Swin
Transformer Model in MSE evaluation results. Notably, the
Swin Transformer was trained on a diverse visual dataset,
while the Multimodal Ensemble Model was trained solely on
a limited video set. Despite these constraints such as limited
computational resources, frame skipping, and video scales,
our model still demonstrates competitive results comparable
to state-of-the-art models, which is noteworthy. However, due
to the vastness of the problem space, the high-accuracy
prediction capabilities of all explored models were not fully
demonstrated. Nonetheless, our research provides a proof of
concept for the multimodal approach, laying the groundwork
and establishing a milestone towards the development of
general multimodal models.

In future work, more extensive and diverse datasets could
be explored to enhance the models’ ability to generalize across
various scenarios. Additionally, fine-tuning the hyper-
parameters and experimenting with different diverse datasets
could lead to substantial improvements in predictive
demonstration. Despite the current limitations, the
experiments lay a solid foundation for future advancements in
multimodal deep regression tasks. As the field of deep
learning continues to evolve, these preliminary results provide
valuable insights and directions for further research and
development.

It is important to note that the focus of this work was to
introduce and experiment with the multimodal deep
regression framework. With further refinements and
enhancements, such a framework holds great potential for
diverse applications, including audio-visual recognition,
video detection analysis, and multi-source data integration.
Our experiments showcased the feasibility of the multimodal
deep regression approach in handling complex tasks involving
visual and audio data. The work sets the stage for future
investigations and improvements in this exciting and
challenging area of research. By continuing to explore
advanced techniques and methodologies, the potential for
more accurate and robust predictions in multimodal data
analysis can be realized.

41

REFERENCES

[1] Ashish Vaswani and Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need. In NeurIPS, pages 5998––6008, 2017.

[2] Said Yacine Boulahia, Abdenour Amamra, Mohamed Ridha Madi, and
Said Daikh. Early, intermediate and late fusion strategies for robust
deep learning-based multimodal action recognition. Machine Vision
and Applications, 32(121), 2021.

[3] Qiliang Chen, Hasiqidalatu Tang, and Jiaxin Cai. Human action
recognition based on vision transformer and l2 regularization. In
Proceedings of the 2022 11th International Conference on Computing
and Pattern Recognition (ICCPR ’22), pages 224–228, 2022.

[4] Konrad Gadzicki, Razieh Khamsehashari, and Christoph Zetzsche.
Early vs late fusion in multimodal convolutional neural networks. In
Proceedings of the 2020 IEEE 23rd International Conference on
Information Fusion (FUSION), Rustenburg, South Africa, pages 1–6,
2020.

[5] Daya Guo, Jiangshui Hong, Binli Luo, Qirui Yan, and Zhangming Niu.
Multi-modal representation learning for short video understanding and
recommendation. In 2019 IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), pages 687–690, 2019.

[6] Qin Jin, Jia Chen, Shizhe Chen, Yifan Xiong, and Alexander
Hauptmann. Describing videos using multi-modal fusion. Proceedings
of the 24th ACM international conference on Multimedia, pages
1087—-1091, 2016.

[7] Lynnette Hui Xian Ng, John Yeh Han Tan, Darryl Jing Heng Tan, and
Roy Ka-Wei Lee. Will you dance to the challenge? predicting user
participation of tiktok challenges. In Proceedings of the 2021

IEEE/ACM international conference on advances in social networks
analysis and mining (ASONAM’21), pages 356–360, 2021.

[8] Andreas Holm Nielsen. Video prediction using convlstm autoencoder
(pytorch). 2020.

[9] Crystal J. Qian, Jonathan D. Tang, Matthew A. Penza, and Christopher
M. Ferri. Instagram popularity prediction via neural networks and
regression analysis. In IEEE Transactions on Multimedia, pages 2561–
2570, 2017.

[10] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. Robust speech recognition via large-
scale weak supervision. arXiv preprint arXiv:2209.01109, 2022.

[11] Xingjian Shi, Zhourong Chen, Hao Wang, and Dit-Yan Yeung.
Convolutional lstm network: A machine learning approach for
precipitation nowcasting. Advances in Neural Information Processing
Systems, pages 802–810, 2015.

[12] Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeulders.
Early versus late fusion in semantic video analysis. In Proceedings of
the Annual ACM International Conference on Multimedia, Singapore,
pages 399–402, 2005.

[13] Georgios Tziafas and Hamidreza Kasaei. Early or late fusion matters:
Efficient rgb-d fusion in vision transformers for 3d object recognition.
arXiv preprint arXiv:2210.00843, 2023.

[14] Massimiliano Viola, Luca Brunelli, and Gian Antonio Susto. Instagram
images and videos popularity prediction: a deep learning-based
approach. Universita degli Studi di Padova,` Padova, IT, 2021.

[15] Jiaheng Xie, Yidong Chai, and Xiao Liu. Unbox the blackbox: Predict
and interpret youtube viewership using deep learning. Journal of
Management Information Systems, pages 541–579, 2023.

TABLE II

ConvLSTMAutoencoder Ensemble Transformer Regression Swin Transformer

Learning Rate: 1e-4 Learning Rate: 1e-9 Epochs: 20

Epochs: 200 Epochs: 7 Dropout: 0.1

Hidden Size: 64 Hidden Size: 32 Embed Dim: 96

Frame Skip: 200 Number of Attention Heads: 4 Patch Size: (4, 4, 4)

Batch Size: 4 Dropout: 0.1 Window Size: (2, 7, 7)

Shrink: 8 Number of Layers: 4 Depths: [2, 2, 6, 2]

Padding: False Late Fusion: True Number of Attention Heads: [3, 6, 12, 24]

Normalize: False Audio Transformer: True Patch Normalization: True

Adam Optimizer Weight Decay: 0 Adam Optimizer Weight Decay: 1e-3 Adam Optimizer Weight Decay: 1e-4

Adam Optimizer Learning Rate: 1e-4 Adam Optimizer Learning Rate: 1e-9 Adam Optimizer Learning Rate: 1e-4

