Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306248
Title: Compressing a convolution neural network based on quantization
Authors: Pertsau, Dmitry
Lukashevich, Marina
Kupryianava, Dziana
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2023
Publisher: Minsk : BSU
Citation: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 269-272.
Abstract: Modern deep neural network models contain a large number of parameters and have a significant size. In this paper we experimentally investigate approaches to compression of convolutional neural network. The results showing the efficiency of quantization of the model while maintaining high accuracy are obtained
URI: https://elib.bsu.by/handle/123456789/306248
ISBN: 978-985-881-522-6
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
269-272.pdf440,46 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.