Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306248
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPertsau, Dmitry
dc.contributor.authorLukashevich, Marina
dc.contributor.authorKupryianava, Dziana
dc.date.accessioned2023-12-12T12:42:17Z-
dc.date.available2023-12-12T12:42:17Z-
dc.date.issued2023
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 269-272.
dc.identifier.isbn978-985-881-522-6
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306248-
dc.description.abstractModern deep neural network models contain a large number of parameters and have a significant size. In this paper we experimentally investigate approaches to compression of convolutional neural network. The results showing the efficiency of quantization of the model while maintaining high accuracy are obtained
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.titleCompressing a convolution neural network based on quantization
dc.typeconference paper
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
269-272.pdf440,46 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.