Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306245
Заглавие документа: Hyperparameters Optimization of Ensemble-based Methods for Retina Image Classification
Авторы: Lukashevich, Marina
Bairak, Sergei
Starovoitov, Valery
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2023
Издатель: Minsk : BSU
Библиографическое описание источника: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 253-257.
Аннотация: Diabetic retinopathy causes damage to the eye's retina and leads to visual impairment in diabetic patients worldwide. It affects the retina, begins asymptomatically and can lead to vision loss. It can be diagnosed quite accurately by using machine learning algorithms to analyze retina images. Diagnosis at an early stage is crucial to prevent dangerous consequences such as blindness. This paper presents a comparative analysis of ensemble machine learning algorithms and describes an approach to the selection of hyperparameters to solve the problem of diabetic retinopathy stage classification (from 0 to 4). Special attention is focused on grid search and random search approaches. This study proposed a hyperparameter selection technique for ensemble algorithms based on the combination of grid search and random search approaches. Hyperparameter selection increased retina image classification accuracy. Experimental results shown that hyperparameter selection increased retina image classification accuracy for testing dataset from 0.7460 for best model (GB) with default parameters to 0.7503 for best model (RF). If we consider binary classification (diabetic retinopathy presents or not) it is possible to achieve accuracy of about 0.9304 (RF)
URI документа: https://elib.bsu.by/handle/123456789/306245
ISBN: 978-985-881-522-6
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
253-257.pdf594,09 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.