Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306245
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLukashevich, Marina
dc.contributor.authorBairak, Sergei
dc.contributor.authorStarovoitov, Valery
dc.date.accessioned2023-12-12T12:42:16Z-
dc.date.available2023-12-12T12:42:16Z-
dc.date.issued2023
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 253-257.
dc.identifier.isbn978-985-881-522-6
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306245-
dc.description.abstractDiabetic retinopathy causes damage to the eye's retina and leads to visual impairment in diabetic patients worldwide. It affects the retina, begins asymptomatically and can lead to vision loss. It can be diagnosed quite accurately by using machine learning algorithms to analyze retina images. Diagnosis at an early stage is crucial to prevent dangerous consequences such as blindness. This paper presents a comparative analysis of ensemble machine learning algorithms and describes an approach to the selection of hyperparameters to solve the problem of diabetic retinopathy stage classification (from 0 to 4). Special attention is focused on grid search and random search approaches. This study proposed a hyperparameter selection technique for ensemble algorithms based on the combination of grid search and random search approaches. Hyperparameter selection increased retina image classification accuracy. Experimental results shown that hyperparameter selection increased retina image classification accuracy for testing dataset from 0.7460 for best model (GB) with default parameters to 0.7503 for best model (RF). If we consider binary classification (diabetic retinopathy presents or not) it is possible to achieve accuracy of about 0.9304 (RF)
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.titleHyperparameters Optimization of Ensemble-based Methods for Retina Image Classification
dc.typeconference paper
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
253-257.pdf594,09 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.