Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306232
Заглавие документа: Human Pose Estimation using SimCC and Swin Transformer
Авторы: Li, Tongrui
Ablameyko, Sergey
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2023
Издатель: Minsk : BSU
Библиографическое описание источника: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 197-201.
Аннотация: 2D Human Pose Estimation is an important task in computer vision. In recent years, methods using deep learning for human pose estimation have been proposed one after another and achieved good results. Among existing models, the built-in attention layer in Transformer enables the model to effectively capture long-range relationships and also reveal the dependencies on which predicted key points depend. SimCC formulates keypoint localization as a classification problem, dividing the horizontal and vertical axes into equal-width numbered bins, and discretizing continuous coordinates into integer bin labels. We propose a new model that combines the Swin Transformer training model to predict the bin where the key points are located, so as to achieve the purpose of predicting key points. This method can achieve better results than other models and can achieve sub-pixel positioning accuracy and low quantization error
URI документа: https://elib.bsu.by/handle/123456789/306232
ISBN: 978-985-881-522-6
Финансовая поддержка: This paper was funded by the China Scholarship Council.
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
197-201.pdf6,4 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.