Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306230
Title: Low-latency Human Portrait Segmentation Network Optimized for CPU Inference
Authors: Pirshtuk, Dzianis
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2023
Publisher: Minsk : BSU
Citation: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 186-192.
Abstract: In this paper, we discuss a design of fast and lightweight neural networks for working in real-time under very strict resource constraints and describe a human portrait segmentation method with temporal consistency based on an encoder-decoder architecture with a state-of-the-art CPU optimized PP-LCNet backbone and a custom decoder. Proposed neural network can process about 150-500 frames per second using only a single CPU thread with high accuracy and can be used for virtual background replacements in video conferencing and other augmented reality cases
URI: https://elib.bsu.by/handle/123456789/306230
ISBN: 978-985-881-522-6
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
186-192.pdf1,86 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.