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Abstract—In this paper, we discuss a design of fast and
lightweight neural networks for working in real-time under
very strict resource constraints and describe a human portrait
segmentation method with temporal consistency based on an
encoder-decoder architecture with a state-of-the-art CPU op-
timized PP-LCNet backbone and a custom decoder. Proposed
neural network can process about 150-500 frames per second
using only a single CPU thread with high accuracy and can be
used for virtual background replacements in video conferencing
and other augmented reality cases.

Index Terms—Portrait segmentation, image segmentation, neu-
ral networks, computer vision, augmented reality.

I. INTRODUCTION

In recent years, significant progress has been made in
scaling up GPU capacity for training and inference of neural
networks. But many people do not update their devices as
quickly, so quite often neural networks must also be used on
outdated consumer devices. Even more difficult is the case
when it need to process video streams at a speed of 30
frames per second on such devices. Moreover, unlike desktop
computers, the energy-saving processors of many laptops and
smartphones cannot operate at high efficiency for a long time.
Either the processor overheats and throttling, or the battery
drains quickly. Also note that moving calculations to the cloud
is not a solution due for real-time video processing tasks
to costs, high delays in data transmission over the Internet
and data privacy concerns. So for tasks such as replacing the
background during a video call, person segmentation should
only be performed on the user’s device. Therefore, the task of
developing an architecture for human segmentation in video
with minimal usage of computing resources is truly relevant.

In this article we review how to design neural networks for
inference under very strict resource constraints and propose a
novel neural network architecture that achieves state-of-the-art
accuracy on two different datasets while running in 150-500
frames per second (FPS) using only a single CPU thread. In
other words, our method utilizes about 6%−20% of only one
CPU core.

The discussed methods can be partially re-used in other
real-time recognition tasks.

II. NEURAL NETWORK ARCHITECTURE

We propose to use an asymmetrical encoder-decoder with
a neural architecture search optimized efficient encoder, a

lightweight decoder, only partial usage of skip-connections
and customized feature fusion module unlike a popular U-Net
[1] architecture for image segmentation.

The general architecture of our segmentation neural network
is illustrated in Fig 1.

For reducing segmentation mask jittering and achieving
temporal consistency between video frames using only fully-
convolutional neural network without computationally ex-
pensive for real-time applications recurrent neural network
architectures we propose using a neural network with 2 inputs:

1) RGB image 224× 224× 3,
2) Prior mask: segmentation mask 224×224×1 computed

for the previous frame.

Here we follow the original approach proposed [2] with a
difference that Google engineers use 4-channel single RGB-
prior input. We propose to use 2 separate inputs. This is
actually an important difference. Single 4-channel input will
be better for GPU inference. On GPU, tensor data is sliced into
4-channels [3]. So using 4-channel input is as fast as using 3-
channel input on GPU, and using the second 1-channel prior
input will be more expensive. But these is no such restriction
for CPU inference, so using 2 inputs has some advantages.
Directly mixing the prior data into the decoder leaves the
encoder input as a regular image, unlike using the single
4-channel RGB-prior as in articles [2], [4]. Therefore, the
encoder weights can be initialized not with random numbers,
but with weights obtained during training for another task,
such as, for example, classification of the dataset ImageNet.
As [5] shows, fune-tuning of pre-trained encoder substantially
reduces training time and also helps to prevent over-fitting on
small datasets.

We use a part of PP-LCNet-0.5x network [6] as an im-
age encoder. PP-LCNet belongs to MobileNetV3 family of
neural network architectures [7]. This family of networks
is intended for use on consumer devices and environments
with limited computing resources such as personal computers,
smartphones, embedding systems and web browsers. Let’s re-
view several general principles of optimization neural network
architectures for inference with such restrictions which we
followed too:

1) Try to never use kernels like 7 × 7 and larger. Avoid
even using of kernels 5 × 5 [8]. A cascade of several
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Fig. 1. Portrait Segmentation Architecture. The stem part uses a standart convolution 3×3 with stride 2 for fast downsampling. Following to [6] DepthSepConv
means depth-wise convolution 3x3 + batch-normalization + h-swish activation + (point-wise) convolution 1x1 + batch-normalization + h-swish activation.
Tiny FFM and FRM mean our Tiny Feature Fusion Module and Feature Refinement Module respectively, detailed below. BN means batch-normalization.
Here PW means 1× 1 (point-wise) convolution without batch-normalization and with linear ReLU activation.

convolutions 3× 3 with non-linear activations can have
a same receptive field as a large convolution with more
number of non-linearity.

2) Using separable convolutions instead of standard con-
volutions to reduce number of multiply-add operations
and layer parameters (weights) [8].
To apply a standart convolution with kernel size h× w
and n filters with bias parameters to an tensor H×W×C
we need about HWnwhC + HWn multiply-add op-
erations. But a pair of a depth-wise convolution with
kernel-size h × w and a point-wise convolution 1 × 1
with n filters with bias parameters requires only about
HWCwh + HWC + HWCn + HWn multiply-add
operations. So we can expect that separable convolutions
will be in nwhC+HWn

Cwh+C+Cn+n times faster. For the most
popular case h = w = 3 we have theoretical acceleration
in 9nC

Cn+10C+n → 9 times for large n or C.
And a standart convolution with bias have nhwC + n
weights. A pair of separable depth-wise and point-wise
operations has hw + C + nC + n weights that is
asymptotically better. For popular case h = w = 3 we
have 9nC+n versus nC+C+n+9, or approximately
in 9 times less parameters for a separable convolution
and large enough n and C.
Note these architectures use an additional not-linear
activation between depth-wise and point-wise convo-
lutions following the greedy strategy of non-linearity
number maximization. And also note that a sequence of
operations ”point-wise convolution + activation + depth-
wise convolution + activation + point-wise convolution

+ activation” can be considered as a kernel-trick.
3) Using residual connections [9]. Sure, a separable con-

volution is only a rough approximation of a standart
convolution, but it helps to train computationally cheap
deeper neural networks with residual connections with
larger number of non-linear activation functions too.
Here residual connections help avoid gradient decay,
separable convolutions reduce using of computational
resources and memory usage.

4) Using squeeze-and-excitation (SE) block (Fig. 2) as a
channel-wise attention [7], [10], [11] to get better hidden
feature representations. It helps to evaluate what filters
are useful now and turn-off unuseful ones as potentially
noisy in order to get cleaner signal.

5) Activation function hard-swish [7] h-swish(x) =
xReLU6(x+3)

6 = xmin(max(x+3,0),6)
6 . Hard-swish is a

type of activation function based on activation function
swish = x · sigmoid(x) that helps to avoid a common
problem known as “dying ReLU,” [12] but replaces the
computationally expensive sigmoid with a piece-wise
linear analogue (hard-sigmoid). “Dying ReLU” makes
a lot of computing inside neural network useless, so
it’s very important to avoid this if we are looking the
best architecture for fast and accurate inference. So we
can see that h-swish is a trade-off between simple and
dangerous ReLU(x) = max(x, 0) and too complex
swish.

6) Cost of computing and memory operations depends on
device architecture and other restrictions (as availability
of Single Instruction/Multiple Data (SIMD) commands
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Fig. 2. A detailed diagram of the Squeeze and Excitation Network with proper
dimensions and the different operations [11].

in WebAssembly virtual machine for inference in web
browser). h-swish, SE-block works well on CPU due
to CPU memory cache architecture, but they are not
so good on GPU due to GPU huge latency of memory
operations [7].

7) All batch-normalization must be fused in inference
mode. We use batch-normalization layers after convo-
lutions before non-linear activations. So all our batch
normalization operations can be folded in convolution
layers [13]. Tensorflow framework fuses such operations
during export model to Tensorflow Lite format automat-
ically.

According to benchmarks [6], PP-LCNet currently provides
one of the best accuracy-latency trade-off for CPU inference
on ImageNet classification. Configuration parameters of PP-
LCNET were found by Baidu research engineers using au-
tomatic neural architecture search (NAS) [6] and outperform
original MobileNetV3, proposed in [7].

For decoder part we propose to use Tiny Feature Fusion
Module (Tiny FFM) (Fig. 3). PP-LCNet is NAS-optimized
low-latency architecture that evaluates effeciently a lot of
encoding features. But reverse upsampling of large number
feature maps will be expersive. Using a lot of channels in
fully-connected part FFM/SE-block is expensive too. To adjust
PP-LCNet to lightweight decoding we add to Feature Fusion
Module (FFM) block [14] at the beginning 2 point-wise
convolution layers for compression of feature space up to 32
feature maps and call this modification as Tiny Feature Fusion

Module (Tiny FFM).
We merge Tiny FFM image features with features extracted

from the prior mask using simple tensor concatenation. To
improve representation of these information we use Feature
Refinement Module, described on the figure 4.

The last 2 layers are a pair of

1) 1-filter point-wise convolution that gives a “dirty seg-
mentation mask” 28×28×1 without batch-normalization
and with linear activation,

2) 1-filter transposed convolution with kernel 16 × 16,
a stride equal to 8 and sigmoid output activation for
prediction of segmentation mask probabilities.

Note that we use transposed convolutions with a kernel
size that is divided by a stride to avoid checkerboard artifacts
due to overlapping issues. As noted in [15], such operation is
equivalent to “sub-pixel convolution,” a technique which has
recently had success in image super-resolution. That is, we
predict the segmentation mask at low resolution 28× 28 and
then upscale it by 8x with sub-pixel precision to 224× 224.

We think such extremely light decoder provides good results
for following reasons:

1) Avoiding of overfitting. Ground truth segmentation
masks are not pixel-perfect annotated. As noted in [16]
Google R&D engineers asked 7 annotators to re-annotate
selfie segmentation masks from their validation dataset
and got inter-annotator 98.74% intersection-over-union
agreement. It’s very difficult to draw accurate curved
border between classes, especially in the area of hair,
beards, etc. So we have about 1.25% of noise on borders
of segmentation masks, and using symmetric U-Net-
like encoder-decoder [1], [14] we risk of tuning neural
network on the noise and as the result running into the
problem of border jitter between video frames.

2) Regularization. We can assume that a portrait of a person
is a simply connected region, if we neglect the small
details of the hair, the edges of wide frames of glasses,
etc. So using aggressive 8 times upsampling we prevent
the prediction of false-positive small regions.

3) Re-calculation of class boundaries using the prior input.
The impact of additional feature maps extracted from
the previous frame mask more explicit for 8 times
upsampling in comparing with deeper decoders. The
task of refining the boundary relative to the previous
frame becomes simpler, and the inter-frame jitter of the
predicted masks is reduced.

4) Efficient feature extraction by the state-of-the-art en-
coder architecture. PP-LCNet avoid dying ReLU prob-
lem using h-swich activation and use a lot of filters
effectively. So we need only correctly decode a lot of
encoder features from the bootle-neck. And proposed
Tiny FFM block helps us.

5) Our encoder can initially extracts good features about
human details and background items because it was pre-
trained on ImageNet.
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Fig. 3. A detailed view of Tiny Feature Fusion Module. GAP means Global Average Pooling. FC1 and FC2 mean fully-connected layers. FC1 layer has
ReLU activation. Concat, Mul and Add means channel concatenation, multiply and adding of 2 tensors respectively. Note that we used bilinear interpolation
for tensor upsampling in our experiments. Here PW means 1× 1 (point-wise) convolution with batch-normalization and ReLU activation.

Fig. 4. Feature Refinement Module.

Note that we was also inspired by a neural network ar-
chitecture proposed in [17]. In that article there was used a
neural network with custom encoder and single-layer decoder
for human portrait segmentation. But our results significantly
exceed the accuracy, number of floating-point operations, and
number of parameters in the network. The performance of
a lightweight decoder depends significantly on the encoder’s
ability to compress spatial information into deep feature
knowledge representations. Therefore, selection of the right
encoder architecture is also an important part of the solution
design.

III. DATA AND TRAINING

A. Datasets

Almost all articles about portrait segmentation [17]–[20] use
EG1800 dataset [21]. This dataset containts 1800 URLs to
Flickr images and corresponding segmentation masks. Since
several links to images are already invalid, we use only 1309
images as a training set and 270 images for testing purposes.

Note that EG1800 is a very small dataset and results on
this dataset may not generalize well to real-world applications.
For comparing with previous articles we train our models on
this dataset too, but to show impact of our propositions on
segmentation metrics we also use in our additional experiments
larger EasyPortrait dataset [22]. This dataset includes 20,000

photos of ordinary people predominantly indoor with fine-
grained segmentation masks. All images are collected and
labeled using crowdsoursing platforms. All annotated images
were devided into training, validation and testing sets, 14,000,
2,000 and 4000 samples, respectively. It’s very important that
subjects from all 3 sets are not intersecting to avoid data leaks.

B. Data augmentation

In our experiments we use the following basic data aug-
mentation tricks:

• Random horizontal flip.
• Random rotate, scale, padding and crop.
• Brightness and contrast jitter, random gamma correction.
• Approximation of motion blur implemented in the Python

library Albumentations [23].

Additionally to train neural networks with the prior mask as
the 2nd input we randomly select one of following variants:

1) Empty previous mask (40% of frames). It simulate trains
the network to work correctly for the first frame and new
objects in scene, as well as boost importance of encoder
features.

2) Small affine transformations or/and small elastic trans-
formations (ElasticTransform in [23]) of the
ground truth mask to train the network to propagate
and adjust to the previous frame mask and emulate fast
camera movements and rotations (35% frames).

3) Major affine transformations of the ground truth mask
to train the network to recognize inadequate masks and
discard them (5% frames).

4) Self-prediction of grid distorted image
(GridDistortion in [23]) to train the network
propagate and adjust to the previous frame its own
prediction and solve a problem variable shift of prior
mask input. We found useful using this variant for
30% samples. These case have a principal difference
between our training procedure with prior masks and
training procedure, proposed in [2] that use similar
way with previous 3 variants only. Note that without
this important variant mask propagation doesn’t train
correctly at all in our experiments.

As we show below, this technique improves image segmen-
tation metrics insignificantly, however, perceptual quality of
video segmentation improves significantly.

189



C. Loss Function and Metrics

To evaluate the models we will use mean intersection-over-
union (IoU) metric between ground truth and predicted masks

TP
TP+FP+FN , where TP , FP and FN are number of true
positive, false positive and false negative pixels respectively.

Let yt be a ground truth mask and yp be a predicted mask.
We use a sum of 3 following loss functions as a target loss
function for back-propagation optimization.

1) Binary cross-entropy of per-pixel classification.
2) Differentiable jaccard (IoU) loss as an approximation of

target IoU metric (1):

jaccard loss = 1−
∑

yt ∗ yp∑
yt +

∑
yp −

∑
yt ∗ yp + 1.

(1)
3) Differentiable boundary jaccard loss [4], [18] to increase

weight of hard pixels for classification in training pro-
cedure.

D. Training Method

We perform all experiments on NVIDIA RTX 2080 Ti GPU.
All models were trained with Tensorflow/Keras framework in
mixed precision mode for 30 epochs using a batch size 32 and
Adam optimizer. The initial learning rate is set as 0.001 and
multiplied by 0.9epoch for all experiments.

IV. EVALUATION RESULTS

We measure FPS on 3.60GHz Intel Core i7-7700 with Linux
and on Macbook Pro 16 (2019) with 2.6 Ghz 6-core Intel
Core i7 in Google Chrome 116. For measure frames per
second (FPS) on native x64 platform with TFLite XNNPACK
Delegate [24] we use official TFLite performance benchmark
[25] for Linux. We use only one thread for all measurements
because we’re not allowed to use all CPU resources for neural
network inference in real life user applications. In the Table
I you can see FPS of steady inference state for 1000 runs
on random inputs. For measure frames per second (FPS) in
web browser with TFLite XNNPACK Delegate with enabled
SIMD instructions we use self-written benchmark based on
TF.JS TFLite API [26] with averaging of run durations too.

Results of all computational experiments are given in the
Table I.

As easy to see, starting learning from pre-trained encoder
instead of random initialization of weights improves IoU by
0.7% for EG1800 and by 0.86% on EasyPortrait.

PP-LCNet as a backbone outperforms MobileNetV3 and
MobileNetV2, especially with native platform computing. Ef-
ficientNet provides better segmentation quality but is too slow.

Our algorithm is as accurate as RCRNet [20], but con-
tains 2 times less floating-point operations and 4 times less
parameters. SINet [19] is too slow and less accurate. NAS
optimized backbones with h-swish activations and some SE-
block like MobileNetV3 or PP-LCNet perform better that
custom architecture with Spatial Squeeze Module proposed
in [19].

Examples of segmentation images from EasyPortrait test
dataset are demonstated on the Figure 5.

V. CONCLUSION

This paper presents an algorithm of video portrait segmen-
tation in real-time without GPU computing. The experiments
performed on EG1800 and EasyPortrait datasets demonstrate
the effictiveness of using pre-trained modern NAS-optimized
encoders for image segmentation.

The proposed neural network architecture runs much faster
than minimal requirements for processing 30 fps video stream
even in web browsers via WebAssembly virtual machine. This
allows the proposed algorithm to be used on a wide variety
of consumer devices, including some older ones. The absence
of the need to use a large amount of computing resources
for neural network calculations makes it possible to process
the video stream, including in parallel with other resource-
intensive calculations, which can be useful in real applications.
An example of such a case would be listening to video stream-
ing with the replacement of the virtual background during
an online computer game. In addition, a small utilization of
processor resources allows you to reduce the rate of discharge
of the battery of a laptop or mobile phone, which is important
for long video conferences.
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