Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306212
Title: Speech emotion recognition using SVM classifier with suprasegmental MFCC features
Authors: Krasnoproshin, Daniil
Vashkevich, Maxim
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2023
Publisher: Minsk : BSU
Citation: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 118-121.
Abstract: This study explores speech emotion recognition (SER) using mel-frequency cepstral coefficients (MFCCs) and Support Vector Machines (SVMs) classifier on the RAVDESS dataset. We proposed a model which uses 80-component suprasegmental MFCC feature vector as an input downstream by SVM classifier. To evaluate the quality of the model, unweighted average recall (UAR) was used. We evaluate different kernel functions for SVM (such as linear, polynomial and radial basis)and different frame size for MFCC extraction (from 20 to 170 ms). Experimental results demonstrate promising accuracy(UAR = 48%), showcasing the potential of this approach for applications like voice assistants, virtual agents, and mental health diagnostics
URI: https://elib.bsu.by/handle/123456789/306212
ISBN: 978-985-881-522-6
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
118-121.pdf463,39 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.