Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306212
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKrasnoproshin, Daniil
dc.contributor.authorVashkevich, Maxim
dc.date.accessioned2023-12-12T12:42:11Z-
dc.date.available2023-12-12T12:42:11Z-
dc.date.issued2023
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 118-121.
dc.identifier.isbn978-985-881-522-6
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306212-
dc.description.abstractThis study explores speech emotion recognition (SER) using mel-frequency cepstral coefficients (MFCCs) and Support Vector Machines (SVMs) classifier on the RAVDESS dataset. We proposed a model which uses 80-component suprasegmental MFCC feature vector as an input downstream by SVM classifier. To evaluate the quality of the model, unweighted average recall (UAR) was used. We evaluate different kernel functions for SVM (such as linear, polynomial and radial basis)and different frame size for MFCC extraction (from 20 to 170 ms). Experimental results demonstrate promising accuracy(UAR = 48%), showcasing the potential of this approach for applications like voice assistants, virtual agents, and mental health diagnostics
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.titleSpeech emotion recognition using SVM classifier with suprasegmental MFCC features
dc.typeconference paper
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
118-121.pdf463,39 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.