Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/291874
Title: Statistical estimation of high-order dependencies in discrete-valued time series
Authors: Kharin, Yu. S.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2022
Publisher: Minsk : BSU
Citation: Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIII Intern. Conf., Minsk, Sept. 6–10, 2022 / Belarusian State University ; eds.: Yu. Kharin [et al.]. – Minsk : BSU, 2022. – Pp. 46-59.
Abstract: Any digital society generates a lot of discrete-valued data. If this discrete-valued data are considered in dynamics (in dependence on time t ∈ Z) we get discrete-valued time series x t ∈ A, where A is some discrete set. This paper is devoted to probabilistic modeling and statistical analysis of high order stochastic dependencies of x t on its prehistory {x τ : τ < t}. The outline of the paper is as follows: Markov chain of order s and its parsimonious (small-parametric) models; approaches to construction of parsimonious models; FBE-method for statistical estimation of parameters in parsimonious models; robustness in statistical estimation of parameters for parsimonious models; application to computer data analysis
URI: https://elib.bsu.by/handle/123456789/291874
ISBN: 978-985-881-420-5
Licence: info:eu-repo/semantics/restrictedAccess
Appears in Collections:2022. Computer Data Analysis and Modeling: Stochastics and Data Science

Files in This Item:
File Description SizeFormat 
46-59.pdf426,05 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.