Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/291874
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kharin, Yu. S. | |
dc.date.accessioned | 2023-01-13T09:38:40Z | - |
dc.date.available | 2023-01-13T09:38:40Z | - |
dc.date.issued | 2022 | |
dc.identifier.citation | Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIII Intern. Conf., Minsk, Sept. 6–10, 2022 / Belarusian State University ; eds.: Yu. Kharin [et al.]. – Minsk : BSU, 2022. – Pp. 46-59. | |
dc.identifier.isbn | 978-985-881-420-5 | |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/291874 | - |
dc.description.abstract | Any digital society generates a lot of discrete-valued data. If this discrete-valued data are considered in dynamics (in dependence on time t ∈ Z) we get discrete-valued time series x t ∈ A, where A is some discrete set. This paper is devoted to probabilistic modeling and statistical analysis of high order stochastic dependencies of x t on its prehistory {x τ : τ < t}. The outline of the paper is as follows: Markov chain of order s and its parsimonious (small-parametric) models; approaches to construction of parsimonious models; FBE-method for statistical estimation of parameters in parsimonious models; robustness in statistical estimation of parameters for parsimonious models; application to computer data analysis | |
dc.language.iso | en | |
dc.publisher | Minsk : BSU | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | |
dc.title | Statistical estimation of high-order dependencies in discrete-valued time series | |
dc.type | conference paper | |
Располагается в коллекциях: | 2022. Computer Data Analysis and Modeling: Stochastics and Data Science |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.