Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/290404
Title: ON GENUS OF DIVISION ALGEBRAS
Authors: TIKHONOV, S. V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Механика
Issue Date: 2021
Publisher: Springer Science and Business Media Deutschland GmbH
Citation: Manuscr Math 2021;164(1-2):321-325.
Abstract: The genus gen(D) of a finite-dimensional central division algebra D over a field F is defined as the collection of classes [D′] ∈ Br (F) , where D′ is a central division F-algebra having the same maximal subfields as D. We show that the fact that quaternion division algebras D and D′ have the same maximal subfields does not imply that the matrix algebras Ml(D) and Ml(D′) have the same maximal subfields for l> 1. Moreover, for any odd n> 1 , we construct a field L such that there are two quaternion division L-algebras D and D′ and a central division L-algebra C of degree and exponent n such that gen(D) = gen(D′) but gen(D⊗ C) ≠ gen(D′⊗ C).
URI: https://elib.bsu.by/handle/123456789/290404
DOI: 10.1007/s00229-020-01184-4
Scopus: 85079771525
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Кафедра высшей алгебры и защиты информации (статьи)

Files in This Item:
File Description SizeFormat 
1904.03933.pdf98,03 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.