Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/290404
Title: | ON GENUS OF DIVISION ALGEBRAS |
Authors: | TIKHONOV, S. V. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Механика |
Issue Date: | 2021 |
Publisher: | Springer Science and Business Media Deutschland GmbH |
Citation: | Manuscr Math 2021;164(1-2):321-325. |
Abstract: | The genus gen(D) of a finite-dimensional central division algebra D over a field F is defined as the collection of classes [D′] ∈ Br (F) , where D′ is a central division F-algebra having the same maximal subfields as D. We show that the fact that quaternion division algebras D and D′ have the same maximal subfields does not imply that the matrix algebras Ml(D) and Ml(D′) have the same maximal subfields for l> 1. Moreover, for any odd n> 1 , we construct a field L such that there are two quaternion division L-algebras D and D′ and a central division L-algebra C of degree and exponent n such that gen(D) = gen(D′) but gen(D⊗ C) ≠ gen(D′⊗ C). |
URI: | https://elib.bsu.by/handle/123456789/290404 |
DOI: | 10.1007/s00229-020-01184-4 |
Scopus: | 85079771525 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Кафедра высшей алгебры и защиты информации (статьи) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1904.03933.pdf | 98,03 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.