Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/280055
Заглавие документа: Self-Supervised Pretraining From Handcrafted Features for chest X-ray classification
Авторы: Yematsinau, K.
Kovalev, V.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Дата публикации: 2022
Издатель: Минск : РИВШ
Библиографическое описание источника: Компьютерные технологии и анализ данных (CTDA’2022) : материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : РИВШ, 2022. – С. 10-13.
Аннотация: Modern convolutional neural networks require a large amount of human labeled data during training process. Prior work demonstrates that this problem can be addressed using self-supervised learning. This paper presents a novel self-supervised pretraining approach, which has been shown to be beneficial for the quality and stability of training process in case of domain-specific datasets with a small amount of labeled data
Доп. сведения: Секция «Системы машинного и глубокого обучения»
URI документа: https://elib.bsu.by/handle/123456789/280055
ISBN: 978-985-586-561-3
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2022. Компьютерные технологии и анализ данных (CTDA’2022)

Полный текст документа:
Файл Описание РазмерФормат 
10-13.pdf247,69 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.