Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/280055
Title: | Self-Supervised Pretraining From Handcrafted Features for chest X-ray classification |
Authors: | Yematsinau, K. Kovalev, V. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика |
Issue Date: | 2022 |
Publisher: | Минск : РИВШ |
Citation: | Компьютерные технологии и анализ данных (CTDA’2022) : материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : РИВШ, 2022. – С. 10-13. |
Abstract: | Modern convolutional neural networks require a large amount of human labeled data during training process. Prior work demonstrates that this problem can be addressed using self-supervised learning. This paper presents a novel self-supervised pretraining approach, which has been shown to be beneficial for the quality and stability of training process in case of domain-specific datasets with a small amount of labeled data |
Description: | Секция «Системы машинного и глубокого обучения» |
URI: | https://elib.bsu.by/handle/123456789/280055 |
ISBN: | 978-985-586-561-3 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | 2022. Компьютерные технологии и анализ данных (CTDA’2022) |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.