Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/280055
Title: Self-Supervised Pretraining From Handcrafted Features for chest X-ray classification
Authors: Yematsinau, K.
Kovalev, V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2022
Publisher: Минск : РИВШ
Citation: Компьютерные технологии и анализ данных (CTDA’2022) : материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : РИВШ, 2022. – С. 10-13.
Abstract: Modern convolutional neural networks require a large amount of human labeled data during training process. Prior work demonstrates that this problem can be addressed using self-supervised learning. This paper presents a novel self-supervised pretraining approach, which has been shown to be beneficial for the quality and stability of training process in case of domain-specific datasets with a small amount of labeled data
Description: Секция «Системы машинного и глубокого обучения»
URI: https://elib.bsu.by/handle/123456789/280055
ISBN: 978-985-586-561-3
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2022. Компьютерные технологии и анализ данных (CTDA’2022)

Files in This Item:
File Description SizeFormat 
10-13.pdf247,69 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.