Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/280055
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorYematsinau, K.
dc.contributor.authorKovalev, V.
dc.date.accessioned2022-05-24T13:13:37Z-
dc.date.available2022-05-24T13:13:37Z-
dc.date.issued2022
dc.identifier.citationКомпьютерные технологии и анализ данных (CTDA’2022) : материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : РИВШ, 2022. – С. 10-13.
dc.identifier.isbn978-985-586-561-3
dc.identifier.urihttps://elib.bsu.by/handle/123456789/280055-
dc.descriptionСекция «Системы машинного и глубокого обучения»
dc.description.abstractModern convolutional neural networks require a large amount of human labeled data during training process. Prior work demonstrates that this problem can be addressed using self-supervised learning. This paper presents a novel self-supervised pretraining approach, which has been shown to be beneficial for the quality and stability of training process in case of domain-specific datasets with a small amount of labeled data
dc.language.isoen
dc.publisherМинск : РИВШ
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.titleSelf-Supervised Pretraining From Handcrafted Features for chest X-ray classification
dc.typeconference paper
Располагается в коллекциях:2022. Компьютерные технологии и анализ данных (CTDA’2022)

Полный текст документа:
Файл Описание РазмерФормат 
10-13.pdf247,69 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.