Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/259149
Title: On a Class of Hermite Interpolation Polynomials for Nonlinear Second Order Partial Differential Operators
Authors: Yanovich, L. A.
Ignatenko, M. V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2018
Publisher: EDP Sciences
Citation: EPJ Web of Conferences; 2018.
Abstract: This article is devoted to the problem of construction of Hermite interpolation formulas with knots of the second multiplicity for second order partial differential operators given in the space of continuously differentiable functions of two variables. The obtained formulas contain the Gateaux differentials of a given operator. The construction of operator interpolation formulas is based on interpolation polynomials for scalar functions with respect to an arbitrary Chebyshev system of functions. An explicit representation of the interpolation error has been obtained.
URI: https://elib.bsu.by/handle/123456789/259149
DOI: 10.1051/epjconf/201817303023
Scopus: 85042356169
Appears in Collections:Кафедра веб-технологий и компьютерного моделирования (статьи)

Files in This Item:
File Description SizeFormat 
epjconf_mmcp2018_03023.pdf104,58 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.