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Abstract. This article is devoted to the problem of construction of Hermite interpolation
formulas with knots of the second multiplicity for second order partial differential ope-
rators given in the space of continuously differentiable functions of two variables. The
obtained formulas contain the Gateaux differentials of a given operator. The construc-
tion of operator interpolation formulas is based on interpolation polynomials for scalar
functions with respect to an arbitrary Chebyshev system of functions. An explicit repre-
sentation of the interpolation error has been obtained.

1 Introduction

The interpolation of the functions provides the basis for the construction and research of approximate
and numerical methods for the solution of many classes of problems. In particular, it is widely used
for the approximate representation and calculation of functions, the numerical integration and diffe-
rentiation, the construction of approximate methods for solving various classes of linear and nonlinear
equations, etc. It is natural and necessary an extension of the interpolation theory of the functions to
other mathematical objects. The operator interpolation, as one of the sections of applied functional
analysis and the general theory of approximate methods, significantly generalizes the problem of func-
tion interpolation and is the foundation for the construction of approximate methods and algorithms
to solve applied problems. The main problems of the operator interpolation are formulated similarly
to the classical problems of the function interpolation.

A number of other interpolation formulas for operators given in the spaces of functions and ma-
trices are given in [1]–[4].

2 Interpolation operator formulas of the Hermite type

Let X = X (T × S ) be a given space of smooth functions on T × S ⊆ R2. By δF[x; h] we denote the
Gateaux differential at the point x = x (t, s) in the direction h = h (t, s) (x, h ∈ X) for an operator F(x)
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defined on the set X.We consider the operator polynomials of the form

P2n+1(x) =
2n+1∑
k=0

ak(ξ, t, s)ϕk(x (t, s)) , (1)

where ak(ξ, t, s) are arbitrarily given functions of the variables ξ, t and s, and {ϕk(x)}2n+1
k=0 is some

arbitrary Chebyshev system of functions.
We consider the Hermite interpolation operator formulas with respect to knots of the second multi-

plicity. In [5] we have constructed the operator polynomial of the Hermite type containing the Gateaux
differentials of a given operator of the form

H2n+1(F; x) = F(x0) +
n∑

k=1

∫ 1

0
δF
[
x0 + τ(xk − x0);

hn,k(x)
σn(x)

(xk − x0)
]

dτ +
n∑

k=0

δF
[
xk;

qn,k(x)
σn(x)

]
, (2)

where hn,k(x) and qn,k(x) are the Hermite fundamental polynomials of the (2n + 1)-degree of the form
(1) in the case of second multiplicity knots x0, x1, . . . , xn with respect to some Chebyshev system
{ϕk(x)}2n+1

k=0 of functions, for which hn,k(x j) = q′n,k(x j) = δk j, h′n,k(x j) = qn,k(x j) = 0 (k, j = 0, 1, . . . , n),

and σn(x) =
∑n

k=0 hn,k(x) is a constant or a variable value. For example, if
{
φk(x) = xk

}2n+1

k=0
is an

algebraic system of functions, then the fundamental polynomials hn,k(x) and qn,k(x) are defined by the
rules

hn,k(x) = l2n,k(x)
[
1 − ω

′′
n (xk)
ω′n(xk)

(x − xk)
]
, qn,k(x) = l2n,k(x)(x − xk), k = 0, 1, . . . , n,

where ln,k(x) =
∏n

j=0; j�k
x−x j

xk−x j
are algebraic Lagrange fundamental polynomials. In this case σn(x) ≡

1, and from the interpolation nodes it is required that xk(t, s)− x j(t, s) � 0 (k � j) for all (t, s) ∈ T × S .
The polynomial (2) is the interpolation operator for a given operator F(x) on the set X relative to

the knots x0, x1, . . . , xn of the second multiplicity. It satisfies the following conditions:

H2n+1 (F; xk) = F (xk) , δH2n+1 [xk; h] = δF [xk; h] (k = 0, 1, . . . , n; h ∈ X) . (3)

For the interpolation error r2n+1(x) = F(x) − H2n+1(F; x), where H2n+1(F; x) is the interpolation
polynomial (2), the following representation holds:

r2n+1(x) =
n+1∑
k=1

∫ 1

0
δF
[
x0 + τ(xk − x0);

(
hn+1,k(x)
σn+1(x)

− hn,k(x)
σn(x)

)
(xk − x0)

]
dτ +

n+1∑
k=0

δF
[
xk;

qn+1,k(x)
σn+1(x)

− qn,k(x)
σn(x)

]
, (4)

where xn+1 = x, hn,n+1(x) = qn,n+1(x) ≡ 0.

3 Interpolation formulas of the Hermite type for second order partial
differential operators

There exists a rich literature on the theory of partial differential equations and operators. See, for
example, [6]–[9] and others. We consider the second order partial differential operators F : C2(T ×
S )→ Y of the form

F (x) = f
(
t, s, x (t, s) , x′t (t, s) , x′s (t, s) , x′′t2 (t, s) , x′′t,s (t, s) , x′′s2 (t, s)

)
, (5)

where x′t (t, s) = ∂x(t,s)
∂t , x′′t,s (t) = ∂

2 x(t,s)
∂t∂s , x′′t2 (t, s) = ∂

2 x(t,s)
∂t2 , the derivative x′′t,s (t, s) = x′′s,t (t, s), C2(T ×S )

is the space of two times continuously differentiable functions x (t, s) on T × S ⊆ R2, the function
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3 Interpolation formulas of the Hermite type for second order partial
differential operators

There exists a rich literature on the theory of partial differential equations and operators. See, for
example, [6]–[9] and others. We consider the second order partial differential operators F : C2(T ×
S )→ Y of the form

F (x) = f
(
t, s, x (t, s) , x′t (t, s) , x′s (t, s) , x′′t2 (t, s) , x′′t,s (t, s) , x′′s2 (t, s)

)
, (5)

where x′t (t, s) = ∂x(t,s)
∂t , x′′t,s (t) = ∂

2 x(t,s)
∂t∂s , x′′t2 (t, s) = ∂

2 x(t,s)
∂t2 , the derivative x′′t,s (t, s) = x′′s,t (t, s), C2(T ×S )

is the space of two times continuously differentiable functions x (t, s) on T × S ⊆ R2, the function

y = f (t, s, u0, u1, . . . , u5) is defined on the rectangle Ω = T × S × T0 × T1 × · · · × T5, Ti are sets of the
number line (i = 0, 1, . . . , 5), and Y is a function space.

We construct the interpolation polynomial for the operator (5) using the equality (2). The diffe-
rential operator (5) depends on the one functional variable x (t, s), for it the Gateaux differential
δF[x; h] at the point x = x (t, s) in the direction h = h (t, s)

(
x, h ∈ C2(T × S )

)
is calculated according

to the rule

δF[x; h] =
∂ f
∂x

h (t, s) +
∂ f
∂x′t

h′t (t, s) +
∂ f
∂x′s

h′s (t, s) +
∂ f
∂x′′t2

h′′t2 (t, s) +
∂ f
∂x′′t,s

h′′t,s (t, s) +
∂ f
∂x′′s2

h′′s2 (t, s) =

=

2∑
i, j=0; i+ j≤2

∂ f
(
t, s, x (t, s) , x′t (t, s) , x′s (t, s) , x′′t2 (t, s) , x′′t,s (t, s) , x′′s2 (t, s)

)

∂x(i+ j)
ti,s j

h(i+ j)
ti,s j (t, s) , (6)

where x(i+ j)
ti,s j (t, s) = ∂

i+ j x(t,s)
∂ti∂s j (i, j = 0, 1, 2; i + j ≤ 2). Bearing in mind the rule (6), the formula (2) for

the operators (5) takes the form

H2n+1 (F; x) = F(x0) +
n∑

k=0

2∑
i, j=0; i+ j≤2

∂F (xk (t, s))

∂
(
∂i+ j xk
∂ti∂s j

) ∂i+ j

∂ti∂s j

qn,k(x(t, s))
σn(x(t, s))

+

+

n∑
k=1

∫ 1

0

2∑
i, j=0; i+ j≤2

∂

∂
(
∂i+ jυk
∂ti∂s j

) f
(
t, s, υk (t, s, τ) ,

∂υk (t, s, τ)
∂t

,
∂υk (t, s, τ)
∂s

∂2υk (t, s, τ)
∂t2 ,

∂2υk (t, s, τ)
∂t∂s

,
∂2υk (t, s, τ)
∂s2

)
∂i+ j

∂ti∂s j

{
hn,k(x(t, s))
σn(x(t, s))

(xk(t, s) − x0(t, s))
}

dτ, (7)

where υk = υk(t, s, τ) = x0(t, s) + τ (xk(t, s) − x0(t, s)), k = 1, 2, . . . , n.
The polynomial (7) satisfies the interpolation conditions (3), where X = C2(T × S ).
We may obtain the representation of the interpolation error of the operator F(x) by the polynomial

(7) and taking into account the equality (4). We have

r2n+1(x) =
n+1∑
k=0

2∑
i, j=0; i+ j≤2

∂F (xk (t, s))

∂
(
∂i+ j xk
∂ti∂s j

) ∂i+ j

∂ti∂s j

(
qn+1,k(x(t, s))
σn+1(x(t, s))

− qn,k(x(t, s))
σn(x(t, s))

)
+

+

n+1∑
k=1

∫ 1

0

2∑
i, j=0; i+ j≤2

∂

∂
(
∂i+ jυk
∂ti∂s j

) f
(
t, s, υk (t, s, τ) ,

∂υk (t, s, τ)
∂t

,
∂υk (t, s, τ)
∂s

,
∂2υk (t, s, τ)
∂t2 ,

∂2υk (t, s, τ)
∂t∂s

,
∂2υk (t, s, τ)
∂s2

)
∂i+ j

∂ti∂s j

{(
hn+1,k(x(t, s))
σn+1(x(t, s))

− hn,k(x(t, s))
σn(x(t, s))

)
(xk(t, s) − x0(t, s))

}
dτ,

where xn+1 = x, hn,n+1(x) = qn,n+1(x) ≡ 0.
Example. Let us consider the second order partial differential operator

F (x) = φ (t, s) + a (t, s) x (t, s) + b (t, s) xp (t, s) + c (t, s) x′t (t, s) + h (t, s) x′′s2 (t, s) , (8)

where p is a fixed non-negative integer number, and φ (t, s) , a (t, s) , b (t, s) , c (t, s) , h (t, s) are arbi-
trarily given functions of the variables t and s. We construct the Hermite interpolation polynomial
H3(F; x) of the form (7) for the operator (8). As fundamental interpolation polynomials h1,k(x), q1,k(x)
(k = 0, 1) we choose the algebraic polynomials

h1,k(x) = l21,k(x)
(
1 + 2 l1,1−k(x)

)
, q1,k(x) = l21,k(x) (x − xk) ,

where l1,k(x) = (x− x1−k)/(xk − x1−k), k = 0, 1, and we take as interpolation nodes xk(t, s), k = 0, 1, the
system of functions x0(t, s) ≡ 3, x1 (t, s) = sin t. In this case the function υ1(t, s, τ) = 3 + τ (sin t − 3),
σ1(x) ≡ 1.
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Bearing in mind that
∫ 1

0 pυp−1
1 (t, s, τ)(sin t − 3)dτ = sinp t − 3p the Hermite interpolation formula

(7) in the case n = 1 for the operators (8) takes the form

H3(F; x) = φ (t, s) + 3a (t, s) + 3pb (t, s) +
(
a (t, s) + p3p−1b (t, s)

)
q1,0 (x (t, s))+

+
(
a (t, s) + pb (t, s) sinp−1 t

)
q1,1 (x (t, s)) +

1∑
k=0

{
c (t, s)

∂

∂t
q1,k (x (t, s)) + h (t, s)

∂2

∂s2 q1,k (x (t, s))
}
+

+a (t, s) (sin t − 3)h1,1(x(t, s)) + b (t, s) (sinp t − 3p) h1,1(x(t, s))+

+c (t, s)
∂

∂t
{
h1,1(x(t, s))(sin t − 3)

}
+ h (t, s)

∂2

∂s2

{
h1,1(x(t, s))(sin t − 3)

}
. (9)

By direct calculations, we verify the validity of the interpolation conditions

H( j)
3 (F; xi) = F( j)(xi) (i, j = 0, 1). (10)

Really, in view of the equalities h1,1(3) = 0, q1,0(3) = 0 and q1,1(3) = 0 we obtain H3(F; 3) = φ (t, s)+
3a (t, s) + 3pb (t, s) = F(3). As q1,0(sin t) = q1,1(sin t) = 0, and h1,1(sin t) = 1, then H3(F; sin t) =
φ (t, s)+3a (t, s)+3pb (t, s)+b (t, s) (sinp t − 3p)+a (t, s) (sin t−3)+c (t, s) cos t = φ (t, s)+a (t, s) sin t+
b (t, s) sinp t + c (t, s) cos t = F(sin t).

Further, since q′1,0(3) = q′1,1(sin t) = 1, q′1,1(3) = h′1,1(3) = 0, q′1,0(sin t) = h′1,1(sin t) = 0, then
H′3(F; 3) = a (t, s) + p3p−1b (t, s) = F′(3), H′3(F; sin t) = a (t, s) + pb (t, s) sinp−1 t = F′(sin t). Thus,
the Hermite interpolation formula (9) satisfies the condition (10).

4 Conclusion

The obtained results may be used in theoretical research as a basis for constructing approximate
methods of solving some nonlinear operator equations that occur in nonlinear dynamics and mathe-
matical physics.
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