Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/258335
Title: Blow-up problem for semilinear heat equation with nonlinear nonlocal neumann boundary condition
Authors: Gladkov, A.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2017
Publisher: American Institute of Mathematical Sciences
Citation: Commun Pure Appl Anal 2017;16(6):2053-2068
Abstract: In this paper, we consider a semilinear parabolic equation with nonlinear nonlocal Neumann boundary condition and nonnegative initial datum. We first prove global existence result. We then give some criteria on this problem which determine whether the solutions blow up in finite time for large or for all nontrivial initial data. Finally, we show that under certain conditions blow-up occurs only on the boundary
URI: https://elib.bsu.by/handle/123456789/258335
DOI: 10.3934/cpaa.2017101
Scopus: 85026466450
Appears in Collections:Кафедра математической кибернетики (статьи)

Files in This Item:
File Description SizeFormat 
1534-0392_2017_6_2053.pdf413,87 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.