Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/233394
Title: Non-asymptotic confidence estimation of the autoregressive parameter in AR(1) process with an unknown noise variance
Authors: Vorobeychikov, S. E.
Burkatovskaya, Yu. B.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2019
Publisher: Minsk : BSU
Citation: Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 315-318.
Abstract: The paper considers the problem of estimating the autoregressive parameter in the first-order autoregressive with Gaussian noises, when the noise variance is unknown. We propose the non-asymptotic technique for compensating the unknown variance, and then, for constructing an estimator. The results of Monte-Carlo simulations are given
URI: http://elib.bsu.by/handle/123456789/233394
ISBN: 978-985-566-811-5
Sponsorship: This study was supported by The Ministry of Education and Science of the Russian Federation, Goszadanie No 2.3208.2017/4.6
Appears in Collections:2019. Computer Data Analysis and Modeling : Stochastics and Data Science

Files in This Item:
File Description SizeFormat 
315-318.pdf361,6 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.