Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/233394
Title: | Non-asymptotic confidence estimation of the autoregressive parameter in AR(1) process with an unknown noise variance |
Authors: | Vorobeychikov, S. E. Burkatovskaya, Yu. B. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика |
Issue Date: | 2019 |
Publisher: | Minsk : BSU |
Citation: | Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 315-318. |
Abstract: | The paper considers the problem of estimating the autoregressive parameter in the first-order autoregressive with Gaussian noises, when the noise variance is unknown. We propose the non-asymptotic technique for compensating the unknown variance, and then, for constructing an estimator. The results of Monte-Carlo simulations are given |
URI: | http://elib.bsu.by/handle/123456789/233394 |
ISBN: | 978-985-566-811-5 |
Sponsorship: | This study was supported by The Ministry of Education and Science of the Russian Federation, Goszadanie No 2.3208.2017/4.6 |
Appears in Collections: | 2019. Computer Data Analysis and Modeling : Stochastics and Data Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
315-318.pdf | 361,6 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.