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Abstract

The paper considers the problem of estimating the autoregressive parameter
in the �rst-order autoregressive with Gaussian noises, when the noise variance
is unknown. We propose the non-asymptotic technique for compensating the
unknown variance, and then, for constructing an estimator. The results of Monte-
Carlo simulations are given.
Keywords: data science, con�dence estimation, autoregression

1 Introduction

The problem of estimation with prescribed accuracy of the parameter of �rst-order
autoregressive process was considered in [1]. An approach on the base of sequential
analysis with a special choice of stopping time was proposed. The mean square accuracy
of the estimator was determined by the parameter of the procedure. To construct this
estimator, one needs to know the variance of the noises. In paper [3], authors proposed
a two-stage procedure to construct the estimator of an unknown parameter if the noise
variance is unknown. The �rst stage is used to obtain the upper bound of the variance.
It should be noted that if the absolute value of the autoregressive parameter is close
to unity then the estimate [3] exceeds manifold the variance. It implies increasing of
estimation time.

In [2], a modi�cation of the sequential estimation procedure ( [1]) was proposed. It
allows one to obtain an estimator of the autoregressive parameter with non-asymptotic
Gaussian distribution. We propose to use this estimator to construct a modi�ed two-
stage estimation procedure for AR(1) process with unknown noise variance.

2 Problem statement

Consider the �rst-order autoregressive model AR(1) de�ned as follows:

xk = θxk−1 + bεk, εk i.i.d. N (0, 1), k = 1, 2, . . . (1)

where θ and b are unknown real parameters. The problem is to construct an estimator
for θ with a prescribed mean-square deviation on the basis of observations {xk}.
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3 Two-stage sequential point estimator

We propose a modi�ed two-stage procedure to estimate parameter θ in model (1). At
the �rst stage, we construct the following statistics to compensate the unknown noise
variance

Γl(h) =
h

2(l − 2)

l∑
i=1

(
θ̂2i(h)− θ̂2i−1(h)

)2

. (2)

We use here as {θ̂j(h)} the improved sequential point estimates proposed in [2].
These estimates represent a special modi�cation of the least squares (maximum likeli-
hood) estimates. For each h > 0 we introduce the sequence of stopping instances

τj = τj(h) = inf

n ≥ 1 :
n∑

k=τj−1+1

x2
k−1 ≥ h

 , τ0 = 0, (3)

and de�ne the sequence of sequential estimates by the formula

θ̂j(h) =
1

h̃j

τj∑
k=τj−1+1

√
βkxk−1xk, (4)

where βk = 1 if k < τj and βτj = ατj , ατj is the correction factor, 0 < ατj ≤ 1, uniquely
de�ned by the equation

τj−1∑
k=τj−1+1

x2
k−1 + ατjx

2
τj−1 = h,

and

h̃j =

τj∑
k=τj−1+1

√
βkx

2
k−1.

According to [2],

mj(h) =
h̃j√
h

(θ̂j(h)− θ)

has Gaussian distribution N(0, b2), which, together with the inequality h̃j ≥ h let one

to construct the con�dence interval for θ̂j(h)− θ if b2 is known. Besides, {mj(h)} are
independent. It allows us to use Γl(h) as an estimator for b2 in model (1).

At the second stage, we construct an estimator for parameter θ. First, we introduce
a stopping time

τ = τ(H) = inf

{
n ≥ 1 :

n∑
k=τ2l+1

x2
k−1

Γl(h)
≥ H

}
(5)

and de�ne a sequential estimator by the following formula

θ̂(h, l,H) =
1

H̃

τ∑
k=τ2l+1

√
βk
xk−1xk
Γl(h)

, (6)
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where βk = 1 if k < τj and βτ = ατ , ατ is the correction factor, 0 < ατ ≤ 1, uniquely
de�ned by the equation

τ−1∑
k=τ2l+1

x2
k−1

Γl(h)
+ ατ

x2
τ−1

Γl(h)
= H,

and

H̃ =
τ∑

k=τ2l+1

√
βk
x2
k−1

Γl(h)
.

Note that, at he �rst stage, the parameter h can be small compared with H. As for
the parameter l, according to [3], it should be not less that 3, to provide the limited
expectation of the multiplier 1/Γl(h). However, we recommend to take l ≥ 10, which
makes estimator (2) more stable, even if we use small values of h.

Theorem 1. The stopping instant (5) is �nite with the probability one; the mean square
deviation of estimator (6) is bounded from above

E
(
θ̂(h, l,H)− θ

)2

≤ 1

H
. (7)

4 Simulation results

In this section, we report and discuss the results of Monte Carlo experiments. Selected
data obtained by the simulations are tabulated in Table 1 . For our study, we set
θ = 0.1, 0.3, 0.5, 0.7, 0.9, 0.99. For each θ, 100 replications were run. The quantities
recorded in Table 1 are: h � threshold in the sequential sampling rule at the �rst
stage; H � threshold in the sequential sampling rule at the second stage; θ � the
autoregressive parameter; Γ � the mean estimator for the parameter b2 obtained at the
�rst stage; θ̃ � the mean estimator for the parameter θ obtained at the second stage; σ̃2

� the mean square deviation for θ̃; N1 and N2 � the mean numbers of observations at
the �rst and at the second stages, correspondingly. The noise variance b2 = 0.81 in all
cases. We also compared our results with the estimator described in [3], here D � the
mean estimator for the parameter b2 obtained at the �rst stage; θ̂ � the mean estimator
for the parameter θ obtained at the second stage; σ̂2 � the mean square deviation for
θ̃; T � the mean number of observations at the second stage; at the �rst stage, the
number of observation was always taken equal to N1. The threshold parameter of the
procedure is equal to H.

The simulation demonstrates, that, for both procedures, the estimators of θ are in
good agreement with the real value of the parameter; the mean square deviation is
about 1/H, as Theorem 1 states. But the estimators of the noise variance b2 behave
di�erently: for our algorithm, they are in the interval [0.78, 1.1], while the real value
is 0.81; for the algorithm described in [3], the interval is [0.85, 180.7], so, the estimator
exceeds the real value more than 200 times if the autoregressive parameter is close to
the bound of the stability region. It implies the grows of the number of observations in
the same proportion. If the autoregressive parameter is close to zero then estimator [3]
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Table 1: Parameter estimation for AR(1) (the noise variance 0.81)

h H θ Γ θ̂ σ̂2 N1 N2 D θ̂ σ̂2 T
50 500 0.1 0.848 0.102 0.0016 1239 516 0.923 0.113 0.0008 522
50 500 0.3 0.969 0.297 0.0020 1174 540 0.915 0.297 0.0011 535
50 500 0.5 1.069 0.492 0.0025 965 501 1.082 0.499 0.0014 505
50 500 0.7 1.085 0.706 0.0020 675 341 1.603 0.704 0.0010 501
50 500 0.9 1.068 0.894 0.0026 259 128 4.459 0.899 0.0003 534
50 500 0.99 0.782 0.998 0.0017 40 12 180.7 0.989 3.9612 2380
100 1000 0.1 1.069 0.095 0.0010 3467 1306 0.822 0.102 0.0010 1000
100 1000 0.3 1.065 0.300 0.0009 2275 1205 0.887 0.304 0.0010 1003
100 1000 0.5 1.010 0.497 0.0011 1876 939 1.081 0.499 0.0011 1008
100 1000 0.7 0.968 0.701 0.0011 1279 616 1.592 0.703 0.0005 998
100 1000 0.9 0.990 0.897 0.0012 505 240 4.465 0.901 0.0002 1047
100 1000 0.99 0.765 0.998 0.0008 65 25 147.4 0.990 1.4631 3622

slightly outperforms estimator (6); the number of observations T is less then N2 for
about 25-30 per cent (1000 vs 1306).

So, our procedure can be used for the estimation of the autoregressive parameter
in AR(1). It should be noted that it can be applied even if the process is not stable,
unlike estimator [3].
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