Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/149019
Title: | Sparse linear systems: theory of decomposition, methods, technology, applications and implementation in Wolfram Mathematica |
Authors: | Pilipchuk, L. A. Pilipchuk, A. S. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 2015 |
Citation: | Pilipchuk, L.A. Sparse linear systems: theory of decomposition, methods, technology, applications and implementation in Wolfram Mathematica / L.A. Pilipchuk, A.S. Pilipchuk // American Institute of Physics. AIP Conf. Proc. Vol. 1690, 060006 (2015); doi: 10.1063/1.4936744. – 9 p. |
Abstract: | In this paper we propose the theory of decomposition, methods, technologies, applications and implementation in Wolfram Mathematica for the constructing the solutions of the sparse linear systems. One of the applications is the Sensor Location Problem for the symmetric graph in the case when split ratios of some arc flows can be zeros. The objective of that application is to minimize the number of sensors that are assigned to the nodes. We obtain a sparse system of linear algebraic equations and research its matrix rank. Sparse systems of these types appear in generalized network flow programming problems in the form of restrictions and can be characterized as systems with a large sparse sub-matrix representing the embedded network structure. |
URI: | http://elib.bsu.by/handle/123456789/149019 |
Appears in Collections: | Статьи факультета прикладной математики и информатики |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1.4936744-2015_5.pdf | 273,6 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.