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Abstract. In this paper we propose the theory of decomposition, methods, technologies, applications and implementation in Wol-
fram Mathematica for the constructing the solutions of the sparse linear systems. One of the applications is the Sensor Location
Problem for the symmetric graph in the case when split ratios of some arc flows can be zeros. The objective of that application
is to minimize the number of sensors that are assigned to the nodes. We obtain a sparse system of linear algebraic equations and
research its matrix rank. Sparse systems of these types appear in generalized network flow programming problems in the form of
restrictions and can be characterized as systems with a large sparse sub-matrix representing the embedded network structure.

INTRODUCTION

In this work we consider the application of the graph theory for construction the solutions of linear systems with
rectangular sparse matrices, namely of linear underdetermined sparse systems. The decomposition theory for a graph
or a multigraph will be applied to construct the solutions of linear systems with rectangular sparse matrices with
different types of sparsity. Sparse systems of these types appear in non-homogeneous network flow programming
problems in the form of restrictions and can be characterized as systems with a large sparse sub-matrix representing
the embedded network structure. We develop direct methods for finding solutions of systems of these types. These
algorithms are based on the theoretic-graph specificities of the structure of the support for the graph and on the
properties of the basis of the solution space of homogeneous sparse systems of special types.

SPARSE LINEAR HOMOGENEOUS SYSTEM WITH BLOCK-DIAGONAL
RECTANGULAR MATRIX

For the finite oriented connected loopless multigraph G = (I, U) with set of nodes / and set of multiarcs U we consider
the problem in unknown multifiow x = (x*,k € K), x* = (xfj, (i, )F € UX;xf,i € I}) satisfying the following sparse
underdetermined system of linear algebraic equations:

: X, ier;
K K ok _ )X ;
PRI { 0, iemp, kek M
JEIF (U JEI7 (U¥)
Analogously to [1], we represent G as |K| connected networks G* = (I*, U¥), K = {1,...,|K|}, where I*, U* are

the sets of nodes and arcs respectively, through which the flow of type k is transported, k € K. For each node i € /
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as well as for each multiarc (i, j) € U we introduce the sets of flow types K(i) = {k € K : i € I}, K(i,j) = {k € K :
(i, )f € U*}. Here IF(U*) = {j : (i, ) € UX, I-(U*) = {j : (jiD)* € U}, I; € 1" is the set of nodes with variable
intensities, xf.‘ is the unknown intensity of node i € I, k € K. The matrix of the system (1) has the following block
structure:

A=[T B, 2)

where T corresponds to the left-hand side of (1) and B — to the right-hand side of (1). The matrix 7 is block diagonal
with non-square |I¥] x |U¥|-blocks Ty. Each column of the matrix 7} corresponds to the arc (i, ¥, and the nonzero
elements of the specified column are the two elements: element of the row with the number #, equal to 1, and element
of the row with the number j, equal to —,u{.‘j. Analogously B is block diagonal with |I¥| x |;]-blocks By, k € K. For each
k € K, there is a single non-zero element per column in By. This element equals (—1) and is located at the intersection
of the row and the column both corresponding to the node i € I}.. In [2, 3, 4] for fixed k was research the rank of the
matrix A of system (1) in the Sensor Location Problem for symmetric generalized graph. Combinatorial aspects of the
Sensor Location Problem are considered in [5]. The methods of decomposition and the theory of graphs partitioning
are applied for constructing the general solutions of the systems with special sparse matrices [6, 7]. These systems
arise in the Sensor Location Problem for one new application connected to the optimal sensors location in the nodes
of a generalized graph.

THE USE OF A PRIORI INFORMATION ABOUT MULTINODES WITH SENSORS
FOR EXCLUSION UNKNOWNS

In [6] was considered one of applications of sparse underdetermined system (1). The objective of that application is to
minimize the number of sensors that are assigned to the nodes for the symmetric graph in the case when split ratios of
some arc flows can be zeros [7]. We obtain a new sparse system of linear algebraic equations and research its matrix
rank. To get the a priori information about some unknowns x\,, (i, j)* € U* and x{, i € I, k € K we locate sensors at
multinodes (i, K(i)). If a multinode (i, K(i)) is monitored, i.e. (i, K(i)) € M, then the values of flows for all outgoing
and all incoming arcs of this multinode, i.e. x{.‘j, x’j‘.l., k € K(i), are considered known:
X = fk je IFUY,
ij ij i (3)
x']‘.l. = J!;., j€ IZ(UY, keKG), (i,K(@) e M.
Besides, if a set My, k € K(i), includes some nodes i from the set I}, then the variable intensities x’lf, k € K(i),
i€ M I;, are considered known, too:
x=ff keK@).ieMNI}. )
Consider a multinode (i, K(i)). For each outgoing arc (i, j)¥ € U* for the node i we introduce a real number
pffj € [0, 1], that is called split ratio and denotes the corresponding part (for the given flow type k) of the total outgoing

k : Kk o_ :
flow 3] X Obviously, . pi; = 1. That is,
JeIH (U*) Jerr (Ut

k k k
d=ple ), b O0sphist 3 oph=t ©)

eI (U*) eI (U*)

It worth mentioning, that earlier in [1, 2] we considered only nonzero split ratios.
For every node i € I*, if |I,.+(Uk)| > 2 then we can express arc flows x]l.‘j along all arcs going out of the node 7 in

terms of just a single outgoing arc (i, v;)", v; € I (U*), provided pf, > 0:

k
pA .
xo=—=Exk L ph, >0, e FUH \ v IF UM 22, ke K@), i€l (©6)
,v;
Let’s state the Sensor Location Problem for the multigraph with zero split ratios of some arc flows: find the
minimal number |M| of monitored multinodes such that the system (1) given the constraints (6) is uniquely solvable

and obtain at least one variant of sensor placement.
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Combinatory properties of algorithms of solving the Sensor Location Problem with nonzero split ratios only and
for graph, i.e. for the case |K| = 1, are considered in [1, 2].

To solve the formulated problem, we substitute the a priori information (3) and (4) into the system (1). If
|Il.+(U")| > 2 for the node i € I* then one can write the flow along all outgoing arcs from node i in terms of a sin-
gle known outgoing arc flow flkv for the arc (i, v;))¥, v; € I Ky, where xﬁvi is known and equals fl’i

k
Pij
Xy= =S Pl >0, jE LU\, IF(UH 22, ke KG), i€ 1. o

ij k Vi’
v

And also we substitute the known arcs flows (7) into the system (1).

Let’s remove from the graphs G* = (I¥, U*), k € K, arcs (but not their nodes) (i, j)¥, for which the constraints (3)
are stated, and all the monitored nodes i € M; from every graph G*, k € K. Likewise we remove from these graphs
the arcs (i, j)* for which arc flows xf.‘j are expressed through (7).

Thus, we have a new multigraph G = (7, U), which consists of the set of graphs
G =0U).TclhT cu- keKck,

where each Ek = (#,Uk) is, in general, a disconnected graph, corresponding to a certain type of flow k € K. We
introduce for each multiarc (i, j) € U of multigrgph GthesetK(i, ) = ke K : (i, j) € Uk} of flow types, transported
through it, and, analogously, for each node i € I we denote the set of flow types, transported through that node, with
Kiy=tkeK:iec ik}. Obviously, |K| < |K| in general case: for some flow types k € K we could have obtained the
complete information, i.e. the arc flows xfj and the variable intensities xf for the whole network G* (in that case Ek,
ke K\ K,dontexist).

For the multigraph G the homogeneous sparse system (1) is transformed into the following inhomogeneous one:

X+t el
X~ = kyk =3 7 T o ko, _ 3
.I*Z(E/k) ! ~1Z(:J/k)#ﬂ : bf, i€l \I, k€K,
JEL; JEL;

where 1;(?") ={j: @ )fe vk}, I,«f(vk) ={j: (ke vk}’ Tlt < Tk’ bi €R.

Some connectivity components of the multigraph G may not contain such multinodes (i, K(i)) that i € |J 7;:,,

keK (i)
where 7; denotes the set of nodes with variable intensities of graph 6", kekK.
Relations (6) hold for the new multigraph G:
P]-(- k k
==, Pk, >0, je LU\ v, IIF(UH 22, i€ 1, k € K(i). 9)
Let’s enumerate the equalities (9): r = 1,2, ..., ¢, where r stands for an equality number and ¢ is the total number

of equalities. Now we collect all the x-terms in the left-hand sides of the equalities and, thus, have linear forms of the
unknown vector x = (X, k € E), Xk = (xf.‘j, (i, j)k € Uk; xff,i € 7;), equated to zero. We denote the coeflicients of these

orms with /li.‘;.’ (since the coefficients of x’i‘—terms are deliberately zero, we don’t use any denotation for them) and

obtain the equations
kr k _ _
DD a=0r=120, (10)
(i./)eU keK(i.j)

where for each fixed r all /lfj’.r are zero except for some two of them (one of which equals 1 and the other one is of kind
7

£).
Pl
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DECOMPOSITION OF THE INHOMOGENEOUS UNDERDETERMINED SPARSE
SYSTEM AND COMPUTATION OF MATRIX RANK

. . . . .. -k ., 3
We consider the inhomogeneous underdetermined sparse system (8), (10) in unknowns xf.‘j, G, )k eU; xf?,l € IZ,

k € K. Based on the developed in [1, 2] decomposition theory the linear system (8) is not changed. The new multigraph
G = (I, U) consists from the set of graphs

G =T UYTclHrU cU’keKcKk.

Each Ek = (Tk,ﬁk) is, in general, a disconnected graph, corresponding to a certain type of flow k € K. The general
solutions of sparse underdetermined systems (8) with rectangular matrices were obtained in [4] for fixed k. For the
blocks of the sparse matrix of the underdetermined system (8) we apply the fundamental results of the theory of
flows in networks, as well as advancements in the technology of construction their analytical and numerical solutions.

Having the ranks of matrices, corresponding to connectivity components of the graphs Ek, k € K, computed, one
obtains the rank of the matrix of the whole system (8). The unknown (9) may be substituted into (8) to eliminate the
unknowns, but such an approach (considered for the case |K| = 1in [3]) leads a new system with matrix of specific
structure.

We will describe the our approach. Substituting into (10) the general solutions of sparse underdetermined systems
(8) with rectangular matrices respect to a given support [4] we obtained the special systems. Matrices of such systems
are composed of determinants A';;O’ s A’;" [1, 2, 8, 9] of the structures entailed by the arcs ﬁk\U;,k € K and by the

—k, —x - . . . .
nodes i € I \I;, k € K, which not included in a given support {Ul’g, I;,k, k € K}. Here

r : k,r k,r T T k,r k,r
A =dre S A + Y A S @), A= Y AT+ D Ak,

(i.j)keUf, el (i.j)eUs i€l

where 6*(t, p) and 6*(y) are characteristic vectors [1, 2, 8, 9], entailed by the elements which not included in a given
support {U' ;‘e, I,’gk, k € K}, r is the number of equation of the system (10). Let rank of the matrix of determinants is equal
n (n is the highest order nonzero minor of that matrix). The rank of the entire underdetermined sparse system (8), (10)
is equal m + n, where m is the rank of the matrix of the system (8) [1, 2, 4, 9].

As result, based on the theory of decomposition of multigraph support [1, 2] and using the general solutions of
sparse systems with rectangular matrices [4] for fixed k we obtained efficient algorithms for computing the matrix
rank of the system (8), (10). The system (8), (10) has a unique solution for the given set M in the Sensor Location

Problem for generalized multigraph if and only if the rank m + n of its matrix equals the number Z (IUkI + IT,tI) of
keK
unknowns.

FUNDAMENTAL SYSTEM OF ELEMENTS: TECHNOLOGIES OF CONSTRUCTION
IN WOLFRAM MATHEMATICA

In the [1, 2] presented implementation in CAS Wolfram Mathematica of decomposition algorithms for constructing
the general solutions of the sparse underdetermined system (8), (10) in the case I} = 0,k € K. We used in [,
2] at realization in Wolfram Mathematica the fundamental results of the theory of flows in networks, as well as
advancements in the technology of construction their analytical and numerical solutions.

We compute a basis of the solution space of the corresponding homogeneous system for the sparse underdeter-
mined system (8) and interpret the basis vectors as characteristic vectors, entailed by non-support arcs and nodes with
variables intensities. Effective algorithm for constructing a characteristic vector of the network part of the sparse linear
non-homogeneous system is obtained. Also the effective algorithms for finding a partial solution of the network part
of the sparse linear non-homogeneous system is obtained. We use the technologies for presentation a spanning tree
[1, 2], which allows to compute the nonzero components of every characteristic vector §(t, p) in O(m) complexity in
the worst case, where m = |I"|.
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FIGURE 1. Spanning tree Uj, of the graph G" = (I", U"), where I" = {1,2,3,4,5,6}, U" = {(1,3),(2,1),(2,6), (3,4),(3,6), (4,6),
(5,4),(6,5)}.

In Listing 1 we present the implementation in Wolfram Mathematica of the algorithm for computing of the
components of the characteristic vector §(r,p) = (3, 6), entailed by the arc (r,p) = (3,6) with respect the span-
ning tree Uy =(2,1),(2,6),(3,4),(4,6).(5,4) ( see Figure 1) of the graph G" = (I",U"), where I" = {1,2,3,4,5,6},
U"=1{(1,3),(2,1),(2,6), (3,4),(3,6), (4,6),(5,4), (6,5)} with the given estimate O(m) for computing of the non-zero
components of the characteristic vector d(t, p) for fixed n, where m = |I"|.

Listing 1

depth={0,1,4,3,4,2};
p={0,1,4,6,4,2};
d={0,-1,-1,-1,-1,1};
T=3;
p =6;
036 ={x36 =1, x65 >0, x13 20, x54 >0, x06 >0, x2; — 0}
i=1j=p;
Whileli # j,
If [depthl[[il] > depth[[ 1],
{
Ifd([i]] == 1,
63,6 = Join[63 6, {xpini — 111,
036 = Join[63 6, {Xi piiny — — 111,
15
i = pllil;
1,
If [depth[[j1] > depth[[i]],

{

Ifd[[j1] == 1,

03,6 = Join[63 6, {xpj1,; — — 1},
036 = Join[036, {xpim — 111,
Ik

J = plljll;

1,

{

Ifld[[i]] == 1,

036 = Join[03 6, {xpin,i — 111,
03,6 = Join[63 6, {Xi prriny — — 111,
K
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Ifd[[j]] == 1,

036 = Join[036, {xprjn1,; — — 111,
036 = Join[036, {x;pim — 111,
IR
i = pllill;
J = plljlL
}
]
Ik
].

s

The implementation in Wolfram Mathematica of the algorithm for computing of the components of the charac-
teristic vector (7, p), entailed by the arc (7, p) (see Listing I) with respect to given spanning tree U} ( see Figure 1)
of the graph G" = (I", U") use in different structures of the support after applying of the methods of decomposition
and the theory of graphs partitioning: forest of trees with special properties and the connected components, every of
which contains at least one non-degenerate cycle [4] and etc.

EXAMPLE OF APPLYING THE THEORY OF DECOMPOSITION TO THE
CONSTRUCTION OF THE SOLUTIONS OF SPARSE UNDERDETERMINED
SYSTEMS

For the graph G = (I, U) (see Figure 2) we consider the sparse underdetermined system (11) — (12), where
I=1{1,2,3,4,5,6,7,8} is the set of nodes of graph G, I* = {1,4, 5,7, 8} is the set of nodes with variable intensities.
The set of arcs of the graph G is: U = {(1,2),(1,8),(2,8),(3,1),(3,7), (4,3),(4,6),(6,5),(6,7),(7,4),(7,8),(8,5)}.

1
X+ Xig = X3 =X, Moy = X = 5,

1
X3+ X37 = 5 X4 = 10,  x43 + x46 — 594 = X,

(11)
3 ! = + =-15
5X6,5 4x8,5 = X5,  Xe5 1 X677~ X46 = >
N 3 1 1 4
X X78 — =X37 — —X67 = —X7, Xg85— =X|8— =X28 — =X78 = —X
7.4 7.8 3 3,7 4 6,7 7 8,5 3 1,8 5 2.8 5 7.8 8
X1,2 + 10)6],3 + 2)62’8 + 2)63,1 + X377 + X43 + 4X476 + x6,5+
+3x6,7 + 13X7’4 + ZX7’8 + Xxgs5 + Tx1 + 12)(4 + 19X5 - ZX7 + 13)(3 =37
(12)

2)61’2 + 4X1’g + X3,1 + 3)(3,7 + 7)64’3 + 2)(4’6 + 5x6,5+
+8x617 + X74 + 2)67’3 + 10)63,5 - 8)61 + X4 + 3)(5 - 3)67 - 4Xg =53

Let the aggregate of sets K = {Uk, I} is a support of the graph G = {I, U} for system (11), (12). It is any graph,
which includes a support R = {Ug, I} of the graph G for the system (11) and the aggregate of sets W = {Uw, I}, }. For
example, the support R = {Ug, I} can be a forest of trees and each tree of the forest has exactly one node from the set
I. Supporting elements that correspond to the aggregate R cover all the nodes of the set 7 of the graph G = {/, U}. In
that example of support (a forest of trees), each tree of the forest R = {Ug, I3} contains only one node from set /.

In Figure 3 a support R = {Ug, I} of the graph G = (I, U) for the system (11) is presented: that is a forest from
IK| = 3 trees Ug, where Ug = {Uk,k € K} : Uy = {(1,2),(1,8)}, U2 = {(3,7)}, U = {(4,6),(6,5)}, I}, = {1, 5, 7}.
Each tree from forest {U?,k € K}, K = {1,2,3} has only single node from the set I, = {1,5,7}: |I(U§) NIl =1,
U N Iy = {1}, U2 N 1y = {7}, IU3) N1, = {5}. We chose a support R = {Ug, I} of the graph G = (I, U)
for the sparse system (11) (see Figure 3). We compute nonzero components of each characteristic vector §(t, p) =
(6;/’.), (i,)) €U; 6, i € I),(t,p) € U\ Ug and 6(y) where 6(y) = (61.7j, (iL,)eU;s, iel)yel'\I.
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FIGURE 2. Finite connected directed graph G.
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FIGURE 3. Graph support R = {Ug, I}, Ug = U} U U% U U3,1; ={1,5,7}.

Nonzero components of the characteristic vectors are equal:

7 2 1
28 _ 28 _ 28 _ 28 _ 1. 31 _ 31 _ 31 _ 31 _ .
52,8 =1, 51,8 - _g’ 61,2 =2, 61 - g’ 53,1 =1, 53,7 =-1 57 - _57 51 - _Z’
Si=1, o=, e atal sl e 2
437 0 Y4 T T 2%s T T 37T 0 O T 5 Y7 T o
3 3 2 6
6,7 6,7 6,7 6.7 L T4 74 _ 74 74 74
66,7_1’ 66,5__1’ o5 T3 07 N 074 =L 646—5’ :06s 3 ds - o35’ 6" =~
12 12 1
78 _ 78 _ 78 7.8 8,5 _ 8,5 _ 8,5 _ 8,5 _
0re =1, 01 — 9, -—=, 05 —-1; 58’5 I, 675=3, 6,7 =3, 65" =——.
5 5 4
3
& =1, &Ge=1, 52,5=1,5§=—§; S5 =1, 815=3, 6] =3.
Using the formulas A}, = A7, + /ll.pjé;j‘.’ + Z APST and AY = 4D + Z /lf}diyj + Z AP67 we compute the

(i.))eUx iel, (i.)eUx iel,

numbers AIT’,J — determinants of the structures, entailed by the arcs (7,p) € U \ Ug, p = 1,2 and determinants of the
structures, entailed by the nodes y € I" \ Iy, p = 1,2, where the sets U \ Ug, I" \ I, are defined as follows: U \ Ug =
{(2,8), 3, 1), (4,3), (6,7), (7,4), (7,8), (8,5)}, I' \ I, = {4, 8}. The nonzero components of a particular solution
X =(%ij, (i,)) € U; %;, i € I') of system (11) are equal: X55 = —15, X5 =9, ¥37 = 10, X; = 23—0, X12=-10, % = -10.
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The numbers A, p = 1, g we compute as follows:

Ap=a,— Y XE- > M (13)

(i,))€Ux iely,

Using the formulas (13) we calculate the numbers of A; and Ay: A} = —%, A, = 31. To form the matrix D of
determinants of structures, generated by the elements of sets W with respect to the equations (12) with the numbers
p = 1,2, elements of the set W = {Uw, I},}, Uy = {(3,1)}, I}, = {4} must be arbitrarily numbered according to:
t(4) =1, #(3,1) = 2. The matrix D has the forrn:

Al Al 28 7
4 3, — —
: 5 12
D= ) 5 = , detD # 0.
Ay A3, 31
’ — 2
5
We calculate the determinants of the structures generated by the arcs of the set Uy where Uy = U \ (Ugr U U W)
andnodesy € I = I'\(x U Ty) Ay =64, Ay =2, Ajy =15, A, =10 AL, =38, Al =—18 Al =182,
2 _ 2 _48 A2 68 A2 512_1522 732_1
As - 16’A2,8 -3 ’A4 35 ’A 20’A 25 ’A7,8 R ’As,s - T
Using [1] we compute the components of the vector 8 = (81, [2):
—197 —6dxs — Lxng — Txyz — g7 — ags + Bagg + Lxgs
ﬁ =
3l+16X3+—X23— 2?)643 ;(1))%7— 12552.X74—EX73+—X35

Since the matrix D is non-singular, we compute from the system Dxy = 8 the unknown of the desired solution
of underdetermined sparse system (11) — (12) that corresponds to the components of the vector xy = (x31, X4) :

——— (828940 + 1021440x3 + 214452x7 g + 72880x43 + 124950x67 + 90468x7 4 — 650832x7 3 + 647535x3 5),

1
1= 15925

X4 = m( 150220 — 230720x3 — 35616x,,8 — 22800x4 3 — 37485x67 — 35840x74 + 137956x75 — 161455x3 5).

We substitute the components of the vector xy in the system (11). Using the graph theoretic properties of the
support for the sparse system (11), we calculate unknown system that correspond to the arcs Uy of forest trees and
unknown system that correspond to the nodes /. The independent variables x.,, (7,0) € Uy and x,, y € I}, in the
sparse underdetermined system (11) — (12) are: xg, x28, X143, X6.7, X74, X738, X85.

Thus, the general solution of the system (11) — (12) for the elements of the aggregate R = {Uk, I3} has the form

1
x| = 63700( 1465940 — 830340xg — 125272x5 5 — 72880x43 — 124950x67 — 90468x74 + 497952x7 3 — 456435x3 5),

3
X2 =2(=5+x28), Xig8= §(5X8 —x28 —4x78 + 5x35),

X37 = 15325 (223230 + 340480xs + 71484xp 8 + 23535x43 + 41650x67 + 30156x74 — 216944x7 g + 215845x3 5),
X46 12;40(150220 +230720x3 + 35616x28 + 35540x43 + 37485x67 + 30744x7 4 — 137956x7 5 + 161455x3 5),
X5 = o= 00(1023960 +692160x3 + 106848x, 3 + 106620x43 + 150675x67 + 92232x7 4 — 413868x73 + 468440x3 5),
X65 = ——=—(—=341320 — 230720x3 — 35616x28 — 35540x4 3 — 50225x67 — 30744x7 4 + 137956x73 — 161455x35),

12740

X7 = —=——(—1785840 — 2723840x3 — 571872x,8 — 188280x4 3 — 285425x67—

63700
~304948x7 4 + 1671852x75 — 1726760xs.s).
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