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Abstract. In this paper we propose the theory of decomposition, methods, technologies, applications and implementation in Wol-
fram Mathematica for the constructing the solutions of the sparse linear systems. One of the applications is the Sensor Location
Problem for the symmetric graph in the case when split ratios of some arc flows can be zeros. The objective of that application
is to minimize the number of sensors that are assigned to the nodes. We obtain a sparse system of linear algebraic equations and
research its matrix rank. Sparse systems of these types appear in generalized network flow programming problems in the form of
restrictions and can be characterized as systems with a large sparse sub-matrix representing the embedded network structure.

INTRODUCTION

In this work we consider the application of the graph theory for construction the solutions of linear systems with
rectangular sparse matrices, namely of linear underdetermined sparse systems. The decomposition theory for a graph
or a multigraph will be applied to construct the solutions of linear systems with rectangular sparse matrices with
different types of sparsity. Sparse systems of these types appear in non-homogeneous network flow programming
problems in the form of restrictions and can be characterized as systems with a large sparse sub-matrix representing
the embedded network structure. We develop direct methods for finding solutions of systems of these types. These
algorithms are based on the theoretic-graph specificities of the structure of the support for the graph and on the
properties of the basis of the solution space of homogeneous sparse systems of special types.

SPARSE LINEAR HOMOGENEOUS SYSTEM WITH BLOCK-DIAGONAL
RECTANGULAR MATRIX

For the finite oriented connected loopless multigraph G = (I,U) with set of nodes I and set of multiarcs U we consider
the problem in unknown multiflow x = (xk, k ∈ K), xk = (xk

i j, (i, j)k ∈ Uk; xk
i , i ∈ I∗k ) satisfying the following sparse

underdetermined system of linear algebraic equations:

∑
j∈I+i (Uk)

xk
i j −

∑
j∈I−i (Uk)

μk
ji x

k
ji =

{
xk

i , i ∈ I∗k ;

0, i ∈ Ik\I∗k ,
k ∈ K, (1)

Analogously to [1], we represent G as |K| connected networks Gk = (Ik,Uk), K = {1, . . . , |K|}, where Ik, Uk are
the sets of nodes and arcs respectively, through which the flow of type k is transported, k ∈ K. For each node i ∈ I
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as well as for each multiarc (i, j) ∈ U we introduce the sets of flow types K(i) = {k ∈ K : i ∈ Ik}, K(i, j) = {k ∈ K :
(i, j)k ∈ Uk}. Here I+i (Uk) = { j : (i, j)k ∈ Uk}, I−i (Uk) = { j : ( j, i)k ∈ Uk}, I∗k ⊆ Ik is the set of nodes with variable

intensities, xk
i is the unknown intensity of node i ∈ I∗k , k ∈ K. The matrix of the system (1) has the following block

structure:
A =
[

T B
]
, (2)

where T corresponds to the left-hand side of (1) and B – to the right-hand side of (1). The matrix T is block diagonal
with non-square |Ik | × |Uk |-blocks Tk. Each column of the matrix Tk corresponds to the arc (i, j)k, and the nonzero
elements of the specified column are the two elements: element of the row with the number i, equal to 1, and element
of the row with the number j, equal to −μk

i j. Analogously B is block diagonal with |Ik | × |I∗k |-blocks Bk, k ∈ K. For each

k ∈ K, there is a single non-zero element per column in Bk. This element equals (−1) and is located at the intersection
of the row and the column both corresponding to the node i ∈ I∗k . In [2, 3, 4] for fixed k was research the rank of the
matrix A of system (1) in the Sensor Location Problem for symmetric generalized graph. Combinatorial aspects of the
Sensor Location Problem are considered in [5]. The methods of decomposition and the theory of graphs partitioning
are applied for constructing the general solutions of the systems with special sparse matrices [6, 7]. These systems
arise in the Sensor Location Problem for one new application connected to the optimal sensors location in the nodes
of a generalized graph.

THE USE OF A PRIORI INFORMATION ABOUT MULTINODES WITH SENSORS
FOR EXCLUSION UNKNOWNS

In [6] was considered one of applications of sparse underdetermined system (1). The objective of that application is to
minimize the number of sensors that are assigned to the nodes for the symmetric graph in the case when split ratios of
some arc flows can be zeros [7]. We obtain a new sparse system of linear algebraic equations and research its matrix
rank. To get the a priori information about some unknowns xk

i j, (i, j)k ∈ Uk and xk
i , i ∈ I∗k , k ∈ K we locate sensors at

multinodes (i,K(i)). If a multinode (i,K(i)) is monitored, i.e. (i,K(i)) ∈ M, then the values of flows for all outgoing
and all incoming arcs of this multinode, i.e. xk

i j, xk
ji, k ∈ K(i), are considered known:

xk
i j = f k

i j, j ∈ I+i (Uk),

xk
ji = f k

ji, j ∈ I−i (Uk), k ∈ K(i), (i,K(i)) ∈ M. (3)

Besides, if a set Mk, k ∈ K(i), includes some nodes i from the set I∗k , then the variable intensities xk
i , k ∈ K(i),

i ∈ Mk
⋂

I∗k , are considered known, too:

xk
i = f k

i , k ∈ K(i), i ∈ Mk
⋂

I∗k . (4)

Consider a multinode (i,K(i)). For each outgoing arc (i, j)k ∈ Uk for the node i we introduce a real number
pk

i j ∈ [0, 1], that is called split ratio and denotes the corresponding part (for the given flow type k) of the total outgoing

flow
∑

j∈I+i (Uk)

xk
i j. Obviously,

∑
j∈I+i (Uk)

pk
i j = 1. That is,

xk
i j = pk

i j ·
∑

j∈I+i (Uk)

xk
i j, 0 ≤ pk

i j ≤ 1,
∑

j∈I+i (Uk)

pk
i j = 1. (5)

It worth mentioning, that earlier in [1, 2] we considered only nonzero split ratios.
For every node i ∈ Ik, if |I+i (Uk)| ≥ 2 then we can express arc flows xk

i j along all arcs going out of the node i in

terms of just a single outgoing arc (i, vi)
k, vi ∈ I+i (Uk), provided pk

i,vi
> 0:

xk
i j =

pk
i j

pk
i,vi

xk
i,vi
, pk

i,vi
> 0, j ∈ I+i (Uk) \ vi, |I+i (Uk)| ≥ 2, k ∈ K(i), i ∈ I. (6)

Let’s state the Sensor Location Problem for the multigraph with zero split ratios of some arc flows: find the
minimal number |M| of monitored multinodes such that the system (1) given the constraints (6) is uniquely solvable
and obtain at least one variant of sensor placement.
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Combinatory properties of algorithms of solving the Sensor Location Problem with nonzero split ratios only and
for graph, i.e. for the case |K| = 1, are considered in [1, 2].

To solve the formulated problem, we substitute the a priori information (3) and (4) into the system (1). If
|I+i (Uk)| ≥ 2 for the node i ∈ Ik then one can write the flow along all outgoing arcs from node i in terms of a sin-

gle known outgoing arc flow f k
i,vi

for the arc (i, vi)
k, vi ∈ I+i (Uk), where xk

i,vi
is known and equals f k

i,vi
:

xk
i j =

pk
i j

pk
i,vi

f k
i,vi
, pk

i,vi
> 0, j ∈ I+i (Uk) \ vi, |I+i (Uk)| ≥ 2, k ∈ K(i), i ∈ I. (7)

And also we substitute the known arcs flows (7) into the system (1).

Let’s remove from the graphs Gk = (Ik,Uk), k ∈ K, arcs (but not their nodes) (i, j)k, for which the constraints (3)
are stated, and all the monitored nodes i ∈ Mk from every graph Gk, k ∈ K. Likewise we remove from these graphs
the arcs (i, j)k for which arc flows xk

i j are expressed through (7).

Thus, we have a new multigraph G = (I,U), which consists of the set of graphs

G
k
= (I

k
,U

k
), I

k ⊆ Ik, U
k ⊆ Uk, k ∈ K ⊆ K,

where each G
k
= (I

k
,U

k
) is, in general, a disconnected graph, corresponding to a certain type of flow k ∈ K. We

introduce for each multiarc (i, j) ∈ U of multigraph G the set K(i, j) = {k ∈ K : (i, j)k ∈ U
k} of flow types, transported

through it, and, analogously, for each node i ∈ I we denote the set of flow types, transported through that node, with

K(i) = {k ∈ K : i ∈ I
k}. Obviously, |K| ≤ |K| in general case: for some flow types k ∈ K we could have obtained the

complete information, i.e. the arc flows xk
i j and the variable intensities xk

i for the whole network Gk (in that case G
k
,

k ∈ K \ K, don’t exist).

For the multigraph G the homogeneous sparse system (1) is transformed into the following inhomogeneous one:

∑
j∈I+i (U

k
)

xk
i j −

∑
j∈I−i (U

k
)

μk
jix

k
ji =

⎧⎪⎪⎨⎪⎪⎩ xk
i + bk

i , i ∈ I
∗
k;

bk
i , i ∈ I

k\I∗k, k ∈ K,
(8)

where I +i (U
k
) = { j : (i, j)k ∈ U

k}, I −i (U
k
) = { j : ( j, i)k ∈ U

k}, I
∗
k ⊆ I

k
, bk

i ∈ R.

Some connectivity components of the multigraph G may not contain such multinodes (i,K(i)) that i ∈ ⋃
k∈K(i)

I
∗
k,

where I
∗
k denotes the set of nodes with variable intensities of graph G

k
, k ∈ K.

Relations (6) hold for the new multigraph G:

xk
i j =

pk
i j

pk
i,vi

xk
i,vi
, pk

i,vi
> 0, j ∈ I+i (U

k
) \ vi, |I+i (U

k
)| ≥ 2, i ∈ I, k ∈ K(i). (9)

Let’s enumerate the equalities (9): r = 1, 2, . . . , q, where r stands for an equality number and q is the total number
of equalities. Now we collect all the x-terms in the left-hand sides of the equalities and, thus, have linear forms of the

unknown vector x = (xk, k ∈ K), xk = (xk
i j, (i, j)k ∈ U

k
; xk

i , i ∈ I
∗
k), equated to zero. We denote the coefficients of these

forms with λk,r
i j (since the coefficients of xk

i -terms are deliberately zero, we don’t use any denotation for them) and

obtain the equations ∑
(i, j)∈U

∑
k∈K(i, j)

λk,r
i j xk

i j = 0, r = 1, 2, . . . , q, (10)

where for each fixed r all λk,r
i j are zero except for some two of them (one of which equals 1 and the other one is of kind

− pk
i j

pk
i,vi

).
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DECOMPOSITION OF THE INHOMOGENEOUS UNDERDETERMINED SPARSE
SYSTEM AND COMPUTATION OF MATRIX RANK

We consider the inhomogeneous underdetermined sparse system (8), (10) in unknowns xk
i j, (i, j)k ∈ U

k
; xk

i , i ∈ I
∗
k,

k ∈ K. Based on the developed in [1, 2] decomposition theory the linear system (8) is not changed. The new multigraph

G = (I,U) consists from the set of graphs

G
k
= (I

k
,U

k
), I

k ⊆ Ik, U
k ⊆ Uk, k ∈ K ⊆ K.

Each G
k
= (I

k
,U

k
) is, in general, a disconnected graph, corresponding to a certain type of flow k ∈ K. The general

solutions of sparse underdetermined systems (8) with rectangular matrices were obtained in [4] for fixed k. For the
blocks of the sparse matrix of the underdetermined system (8) we apply the fundamental results of the theory of
flows in networks, as well as advancements in the technology of construction their analytical and numerical solutions.

Having the ranks of matrices, corresponding to connectivity components of the graphs G
k
, k ∈ K, computed, one

obtains the rank of the matrix of the whole system (8). The unknown (9) may be substituted into (8) to eliminate the

unknowns, but such an approach (considered for the case |K| = 1 in [5]) leads a new system with matrix of specific
structure.

We will describe the our approach. Substituting into (10) the general solutions of sparse underdetermined systems
(8) with rectangular matrices respect to a given support [4] we obtained the special systems. Matrices of such systems

are composed of determinants Λk,r
τρ , Λk,r

γ [1, 2, 8, 9] of the structures entailed by the arcs U
k\Uk

R, k ∈ K and by the

nodes i ∈ I
k\I∗k, k ∈ K, which not included in a given support {Uk

R, I
∗k
R , k ∈ K}. Here

Λk,r
τρ = λ

k,r
τρ +

∑
(i, j)k∈Uk

R

λk,r
i j δ

k
i j(τ, ρ) +

∑
i∈I∗kR

λk,r
i δ

k
i (τ, ρ), Λk,r

γ = λ
k,r
γ +

∑
(i, j)k∈Uk

R

λk,r
i j δ

k
i j(γ) +

∑
i∈I∗kR

λk,r
i δ

k
i (γ),

where δk(τ, ρ) and δk(γ) are characteristic vectors [1, 2, 8, 9], entailed by the elements which not included in a given
support {Uk

R, I
∗k
R , k ∈ K}, r is the number of equation of the system (10). Let rank of the matrix of determinants is equal

n (n is the highest order nonzero minor of that matrix). The rank of the entire underdetermined sparse system (8), (10)
is equal m + n, where m is the rank of the matrix of the system (8) [1, 2, 4, 9].

As result, based on the theory of decomposition of multigraph support [1, 2] and using the general solutions of
sparse systems with rectangular matrices [4] for fixed k we obtained efficient algorithms for computing the matrix
rank of the system (8), (10). The system (8), (10) has a unique solution for the given set M in the Sensor Location

Problem for generalized multigraph if and only if the rank m + n of its matrix equals the number
∑
k∈K

(
|Uk | + |I∗k |

)
of

unknowns.

FUNDAMENTAL SYSTEM OF ELEMENTS: TECHNOLOGIES OF CONSTRUCTION
IN WOLFRAM MATHEMATICA

In the [1, 2] presented implementation in CAS Wolfram Mathematica of decomposition algorithms for constructing
the general solutions of the sparse underdetermined system (8), (10) in the case I∗k = ∅, k ∈ K. We used in [1,
2] at realization in Wolfram Mathematica the fundamental results of the theory of flows in networks, as well as
advancements in the technology of construction their analytical and numerical solutions.

We compute a basis of the solution space of the corresponding homogeneous system for the sparse underdeter-
mined system (8) and interpret the basis vectors as characteristic vectors, entailed by non-support arcs and nodes with
variables intensities. Effective algorithm for constructing a characteristic vector of the network part of the sparse linear
non-homogeneous system is obtained. Also the effective algorithms for finding a partial solution of the network part
of the sparse linear non-homogeneous system is obtained. We use the technologies for presentation a spanning tree
[1, 2], which allows to compute the nonzero components of every characteristic vector δ(τ, ρ) in O(m) complexity in
the worst case, where m = |In|.
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FIGURE 1. Spanning tree Un
R of the graph Gn = (In,Un), where In = {1, 2, 3, 4, 5, 6}, Un = {(1, 3), (2, 1), (2, 6), (3, 4), (3, 6), (4, 6),

(5, 4), (6, 5)}.

In Listing 1 we present the implementation in Wolfram Mathematica of the algorithm for computing of the
components of the characteristic vector δ(τ, ρ) = δ(3, 6), entailed by the arc (τ, ρ) = (3, 6) with respect the span-
ning tree Un

R =(2, 1),(2, 6),(3, 4),(4, 6),(5, 4) ( see Figure 1) of the graph Gn = (In,Un), where In = {1, 2, 3, 4, 5, 6},
Un = {(1, 3), (2, 1), (2, 6), (3, 4), (3, 6), (4, 6), (5, 4), (6, 5)} with the given estimate O(m) for computing of the non-zero
components of the characteristic vector δ(τ, ρ) for fixed n, where m = |In|.

Listing 1

depth={0,1,4,3,4,2};
p={0,1,4,6,4,2};
d={0,-1,-1,-1,-1,1};
τ =3;
ρ =6;
δ3,6 = {x3,6 → 1, x6,5 → 0, x1,3 → 0, x5,4 → 0, x2,6 → 0, x2,1 → 0};
i = τ; j = ρ;
While[i � j,

If [depth[[i]] > depth[[ j]],
{
If[d[[i]] == 1,
δ3,6 = Join[δ3,6, {xp[[i]],i → 1}],
δ3,6 = Join[δ3,6, {xi,p[[i]] → −1}],
];
i = p[[i]];
},
If [depth[[ j]] > depth[[i]],
{
If[d[[ j]] == 1,
δ3,6 = Join[δ3,6, {xp[[ j]], j → −1}],
δ3,6 = Join[δ3,6, {x j,p[[ j]] → 1}],
];
j = p[[ j]];
},
{
If[d[[i]] == 1,
δ3,6 = Join[δ3,6, {xp[[i]],i → 1}],
δ3,6 = Join[δ3,6, {xi,p[[i]] → −1}],
];
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If[d[[ j]] == 1,
δ3,6 = Join[δ3,6, {xp[[ j]], j → −1}],
δ3,6 = Join[δ3,6, {x j,p[[ j]] → 1}],
];
i = p[[i]];
j = p[[ j]];
}
]
];
];

The implementation in Wolfram Mathematica of the algorithm for computing of the components of the charac-
teristic vector δ(τ, ρ), entailed by the arc (τ, ρ) (see Listing 1) with respect to given spanning tree Un

R ( see Figure 1)
of the graph Gn = (In,Un) use in different structures of the support after applying of the methods of decomposition
and the theory of graphs partitioning: forest of trees with special properties and the connected components, every of
which contains at least one non-degenerate cycle [4] and etc.

EXAMPLE OF APPLYING THE THEORY OF DECOMPOSITION TO THE
CONSTRUCTION OF THE SOLUTIONS OF SPARSE UNDERDETERMINED

SYSTEMS

For the graph G = (I,U) (see Figure 2) we consider the sparse underdetermined system (11) – (12), where
I = {1, 2, 3, 4, 5, 6, 7, 8 } is the set of nodes of graph G, I∗ = {1, 4, 5, 7, 8} is the set of nodes with variable intensities.
The set of arcs of the graph G is: U = {(1, 2), (1, 8), (2, 8), (3, 1), (3, 7), (4, 3), (4, 6), (6, 5), (6, 7), (7, 4), (7, 8), (8, 5)}.

x1,2 + x1,8 − 1

4
x3,1 = x1, x2,8 − 1

2
x1,2 = 5,

x3,1 + x3,7 − 1

7
x4,3 = 10, x4,3 + x4,6 − 2

5
x7,4 = x4,

−3

5
x6,5 − 1

4
x8,5 = x5, x6,5 + x6,7 − x4,6 = −15,

x7,4 + x7,8 − 2

3
x3,7 − 3

4
x6,7 = −x7, x8,5 − 1

3
x1,8 − 1

5
x2,8 − 4

5
x7,8 = −x8

(11)

x1,2 + 10x1,8 + 2x2,8 + 2x3,1 + x3,7 + x4,3 + 4x4,6 + x6,5+

+3x6,7 + 13x7,4 + 2x7,8 + x8,5 + 7x1 + 12x4 + 19x5 − 2x7 + 13x8 = 37

2x1,2 + 4x1,8 + x3,1 + 3x3,7 + 7x4,3 + 2x4,6 + 5x6,5+

+8x6,7 + x7,4 + 2x7,8 + 10x8,5 − 8x1 + x4 + 3x5 − 3x7 − 4x8 = 53

(12)

Let the aggregate of sets K = {UK , I∗K} is a support of the graph G = {I,U} for system (11), (12). It is any graph,
which includes a support R = {UR, I∗R} of the graph G for the system (11) and the aggregate of sets W = {UW , I∗W }. For
example, the support R = {UR, I∗R} can be a forest of trees and each tree of the forest has exactly one node from the set
I∗R. Supporting elements that correspond to the aggregate R cover all the nodes of the set I of the graph G = {I,U}. In
that example of support (a forest of trees), each tree of the forest R = {UR, I∗R} contains only one node from set I∗R.

In Figure 3 a support R = {UR, I∗R} of the graph G = (I,U) for the system (11) is presented: that is a forest from

|K| = 3 trees UR, where UR = {Uk
T , k ∈ K} : U1

T = {(1, 2), (1, 8)}, U2
T = {(3, 7)}, U3

T = {(4, 6), (6, 5)}, I∗R = {1, 5, 7}.
Each tree from forest {Uk

T , k ∈ K}, K = {1, 2, 3} has only single node from the set I∗R = {1, 5, 7}: |I(Uk
T )
⋂

I∗R| = 1,

I(U1
T )
⋂

I∗R = {1}, I(U2
T )
⋂

I∗R = {7}, I(U3
T )
⋂

I∗R = {5}. We chose a support R = {UR, I∗R} of the graph G = (I,U)
for the sparse system (11) (see Figure 3). We compute nonzero components of each characteristic vector δ(τ, ρ) =
(δ
τρ
i j , (i, j) ∈ U; δ

τρ
i , i ∈ I∗), (τ, ρ) ∈ U \ UR and δ(γ) where δ(γ) = (δ

γ
i j, (i, j) ∈ U; δ

γ
i , i ∈ I∗), γ ∈ I∗ \ I∗R.
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FIGURE 2. Finite connected directed graph G.

FIGURE 3. Graph support R = {UR, I∗R}, UR = U1
T
⋃

U2
T
⋃

U3
T , I
∗
R = {1, 5, 7}.

Nonzero components of the characteristic vectors are equal:

δ2,8
2,8 = 1, δ2,8

1,8 = −
3

5
, δ2,8

1,2 = 2, δ2,8
1
=

7

5
; δ3,1

3,1 = 1, δ3,1
3,7 = −1, δ3,1

7
= −2

3
, δ3,1

1
= −1

4
;

δ4,3
4,3 = 1, δ4,3

4,6
= −1, , δ4,3

6,5
= −1 δ4,3

3,7 =
1

7
, δ4,3

5
=

3

5
, δ4,3

7
=

2

21
;

δ6,7
6,7
= 1, δ6,7

6,5
= −1, δ6,7

5
=

3

5
, δ6,7

7
=

3

4
; δ7,4

7,4 = 1, δ7,4
4,6
=

2

5
, , δ7,4

6,5
=

2

5
δ7,4

5
= − 6

25
, δ7,4

7
= −1;

δ7,8
7,8 = 1, δ7,8

1,8 = −
12

5
, δ7,8

1
= −12

5
, δ7,8

7
= −1; δ8,5

8,5
= 1, δ8,5

1,8 = 3, δ8,5
1
= 3, δ8,5

5
= −1

4
.

δ44 = 1, δ44,6 = 1, δ46,5 = 1, δ45 = −
3

5
; δ88 = 1, δ81,8 = 3, δ81 = 3.

Using the formulas Λ
p
τρ = λ

p
τρ +

∑
(i, j)∈UR

λ
p
i jδ
τρ
i j +
∑
i∈I∗R
λ

p
i δ
τρ
i and Λ

p
γ = λ

p
γ +

∑
(i, j)∈UR

λ
p
i jδ
γ
i j +
∑
i∈I∗R
λ

p
i δ
γ
i we compute the

numbers Λ
p
τρ – determinants of the structures, entailed by the arcs (τ, ρ) ∈ U \ UR, p = 1, 2 and determinants of the

structures, entailed by the nodes γ ∈ I∗ \ I∗R, p = 1, 2, where the sets U \ UR, I∗ \ I∗R are defined as follows: U \ UR =

{(2, 8), (3, 1), (4, 3), (6, 7), (7, 4), (7, 8), (8, 5)}, I∗ \ I∗R = {4, 8}. The nonzero components of a particular solution

x̃ = (x̃i j, (i, j) ∈ U; x̃i, i ∈ I∗) of system (11) are equal: x̃6,5 = −15, x̃5 = 9, x̃3,7 = 10, x̃7 =
20
3
, x̃1,2 = −10, x̃1 = −10.
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The numbers Ap, p = 1, q we compute as follows:

Ap = αp −
∑

(i, j)∈UR

λ
p
i j x̃i j −

∑
i∈I∗R
λ

p
i x̃i. (13)

Using the formulas (13) we calculate the numbers of A1 and A2: A1 = − 107
3
, A2 = 31. To form the matrix D of

determinants of structures, generated by the elements of sets W with respect to the equations (12) with the numbers
p = 1, 2, elements of the set W = {UW , I∗W }, UW = {(3, 1)}, I∗W = {4} must be arbitrarily numbered according to:
t(4) = 1, t(3, 1) = 2. The matrix D has the form:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Λ1

4 Λ1
3,1

Λ2
4 Λ2

3,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

28

5

7

12

31

5
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , detD � 0.

We calculate the determinants of the structures generated by the arcs of the set UN where UN = U \ (UR
⋃

UW )
and nodes γ ∈ I∗N = I∗ \(I∗R

⋃
I∗W ) :Λ1

8 = 64, Λ1
2,8 =

39
5
,Λ1

4,3 =
772
105
, Λ1

6,7 =
119
10
,Λ1

7,4 =
311
25
, Λ1

7,8 = − 184
5
, Λ1

8,5 =
189

4
,

Λ2
8 = −16,Λ2

2,8 = − 48
5
,Λ2

4,3 =
68
35
,Λ2

6,7 =
51
20
,Λ2

7,4 =
152
25
,Λ2

7,8 =
73
5
,Λ2

8,5 = − 11
4
.

Using [1] we compute the components of the vector β
′
= (β1, β2):

β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
− 107

3
− 64x8 − 39

5
x2,8 − 772

105
x4,3 − 119

10
x6,7 − 311

25
x7,4 +

184
5

x7,8 +
11
4

x8,5

31 + 16x8 +
48
5

x2,8 − 68
35

x4,3 − 51
20

x6,7 − 152
25

x7,4 − 73
5

x7,8 +
11
4

x8,5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Since the matrix D is non-singular, we compute from the system DxW = β the unknown of the desired solution

of underdetermined sparse system (11) – (12) that corresponds to the components of the vector xW = (x3,1, x4) :

x3,1 =
1

15925
(828940 + 1021440x8 + 214452x2,8 + 72880x4,3 + 124950x6,7 + 90468x7,4 − 650832x7,8 + 647535x8,5),

x4 =
1

12740
(−150220 − 230720x8 − 35616x2,8 − 22800x4,3 − 37485x6,7 − 35840x7,4 + 137956x7,8 − 161455x8,5).

We substitute the components of the vector xW in the system (11). Using the graph theoretic properties of the
support for the sparse system (11), we calculate unknown system that correspond to the arcs UR of forest trees and
unknown system that correspond to the nodes I∗R. The independent variables xτ,ρ, (τ, ρ) ∈ UN and xγ, γ ∈ I∗N in the
sparse underdetermined system (11) – (12) are: x8, x2,8, x4,3, x6,7, x7,4, x7,8, x8,5.

Thus, the general solution of the system (11) – (12) for the elements of the aggregate R = {UR, I∗R} has the form

x1 =
1

63700
(−1465940 − 830340x8 − 125272x2,8 − 72880x4,3 − 124950x6,7 − 90468x7,4 + 497952x7,8 − 456435x8,5),

x1,2 = 2(−5 + x2,8), x1,8 =
3

5
(5x8 − x2,8 − 4x7,8 + 5x8,5),

x3,7 = − 3

15925
(223230 + 340480x8 + 71484x2,8 + 23535x4,3 + 41650x6,7 + 30156x7,4 − 216944x7,8 + 215845x8,5),

x4,6 = − 1

12740
(150220 + 230720x8 + 35616x2,8 + 35540x4,3 + 37485x6,7 + 30744x7,4 − 137956x7,8 + 161455x8,5),

x5 =
1

63700
(1023960 + 692160x8 + 106848x2,8 + 106620x4,3 + 150675x6,7 + 92232x7,4 − 413868x7,8 + 468440x8,5),

x6,5 =
1

12740
(−341320 − 230720x8 − 35616x2,8 − 35540x4,3 − 50225x6,7 − 30744x7,4 + 137956x7,8 − 161455x8,5),

x7 =
1

63700
(−1785840 − 2723840x8 − 571872x2,8 − 188280x4,3 − 285425x6,7−

−304948x7,4 + 1671852x7,8 − 1726760x8,5).

060006-8 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

217.21.43.71 On: Wed, 09 Dec 2015 14:49:11



REFERENCES

[1] L. A. Pilipchuk. Sparse Linear Systems and Their Applications. Minsk, BSU, 2013, 235 pp.
[2] L. A. Pilipchuk. Sparse Underdetermined Systems of Linear Algebraic Equations. Minsk, BSU, 2012, 260

pp. (in Russian).
[3] A. S. Pilipchuk. “The location of the minimum number of monitored nodes in the generalized graph for

estimating traffic its unobservable part.” – Vestnik BSU. Ser. 1. No. 1, 2015. P. 108 – 111 (in Russian).
[4] L. A. Pilipchuk, O. V. German, A. S. Pilipchuk, “The general solutions of sparse systems with rectangular

matrices in the problem of sensors optimal location in the nodes of a generalized graph.” – Vestnik BSU. Ser.
1. No. 2, 2015. P. 91–96.

[5] L. Bianco, G. Confessore, M. Gentili. “Combinatorial Aspects of the Sensor Location Problem,” in Annals
of Operation Research, 2006, No. 144(1), P. 201–234.

[6] L. A. Pilipchuk, A. S. Pilipchuk and Y.V. Ramanouski “Optimal location of sensors on a multigraph with
zero split ratios of some arc flows.” – AIP Conf. Proc., Vol. 1631, 2014. P. 350-353.

[7] L. A. Pilipchuk, A. S. Pilipchuk and Y.V. Ramanouski “Solution of sparse system for sensor location problem
as function of non-strictly positive arc flow split ratios.” – AIP Conf. Proc., Vol. 1631, 2014. P. 344 - 349.

[8] L. A. Pilipchuk, Y. V. Malakhouskaya, D. R. Kincaid, and M. Lai, in East-West J. of Mathematics 4, No. 2,
2002, pp. 191–201.

[9] L. A. Pilipchuk, T. S. Vishnevetskaya and Y. H. Pesheva “Sensor location problem for a multigraph.” –
Mathematica Balkanica. New Series, Vol. 27, 2013. Fasc. 1–2. P. 65-75.

060006-9 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

217.21.43.71 On: Wed, 09 Dec 2015 14:49:11

http://dx.doi.org/10.1007/s10479-006-0016-9
http://dx.doi.org/10.1007/s10479-006-0016-9
http://dx.doi.org/10.1063/1.4902497
http://dx.doi.org/10.1063/1.4902496

