Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/10691
Title: | Computational complexity of maximum distance-(k, l) matchings in graphs |
Authors: | Brauner, N. Finke, G. Jost, V. Kovalyov, M. V. Orlovich, Yu. L. Pronin, Ph. V. Waserhole, A. |
Keywords: | ЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатика |
Issue Date: | 2011 |
Publisher: | БГУ |
Citation: | Международный конгресс по информатике: информационные системы и технологии: материалы международного научного конгресса 31 окт. – 3 нояб. 2011 г. : в 2 ч. Ч. 2. – Минск: БГУ, 2011. – C. 341-346. |
Abstract: | In this paper, we introduce the concept of a distance-(k, l) matching of a graph, which is a subset of edges of this graph such that the number of intermediate edges in the shortest path between any two edges of this set lies between k and l. We prove that the problem MAXIMUM DISTANCE-(k, l) MATCHING, which asks whether a graph contains a distance-(k, l) matching of size exceeding a given number, is NP-complete for arbitrary given or variable k and l, and that the weighted variant of this problem is strongly NP-complete even for bipartite graphs. We also present several upper bounds on the size of a maximum distance-(k, l) matching. |
Description: | Секция 10. Теоретическая информатика |
URI: | http://elib.bsu.by/handle/123456789/10691 |
ISBN: | 978-985-518-564-3 |
Appears in Collections: | 2011. Международный конгресс по информатике : информационные системы и технологии. Часть 2. Статьи факультета прикладной математики и информатики |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
74 Brauner.pdf | 234,05 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.