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In this paper, we introduce the concept of a distance-(k, l) matching of a graph, 

which is a subset of edges of this graph such that the number of intermediate edges in 
the shortest path between any two edges of this set lies between k and l. We prove 
that the problem MAXIMUM DISTANCE-(k, l) MATCHING, which asks whether a graph 
contains a distance-(k, l) matching of size exceeding a given number, is NP-complete 
for arbitrary given or variable k and l, and that the weighted variant of this problem is 
strongly NP-complete even for bipartite graphs. We also present several upper bounds 
on the size of a maximum distance-(k, l) matching. 
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INTRODUCTION 

 
A problem which we call MAXIMUM DISTANCE-(k, l) MATCHING is studied. It is a 

generalization of the classical matching problem, in which the distance between the 
selected objects in the matching is bounded. Special cases of this problem have applications 
in the areas of communication network testing [22], concurrent transmission of messages in 
wireless ad hoc networks [1], secure communication channels in broadcast networks [14], 
and many others. In these applications, the distance between the objects of a matching is 
restricted due to the security or interference reasons. 

The standard graph-theoretic [2] and computational complexity [12] terminology is 
used throughout this paper. 

We consider only simple finite graphs without loops or multiple edges and assume that 
the graphs are connected, i. e., for any pair of vertices there exists a path from one vertex to 
the other. Let G = (V, E) be such a graph with vertex set V = V(G) and edge set E = E(G). 

The distance between vertices x, y ∈ V, denoted as distG(x, y) or simply dist(x, y), is equal to 
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the number of edges in a shortest path between x and y. In particular, dist(x, y) = 0 if and 

only if x = y. For a vertex x ∈ V and an edge e ∈ E of G, dist(x, e) = min{dist(x, y) : y ∈ e} is 

the distance between vertex x and edge e. The distance dist(e, e′) between two distinct edges 

e, e′ ∈ E is defined as dist(e, e′) = min{dist(x, y) : x ∈ e, y ∈ e′}. This means that 

dist(e, e′) = 0 if and only if the edges e and e′ are adjacent, i.e., e ∩ e′ ≠ ∅. The edges e and 

e′ are independent if they are not adjacent, i.e., dist(e, e′) ≥ 1. If S is a set of vertices (edges, 

respectively) and x is a vertex of G, then the distance from x to S, denoted by dist(x, S), is 

defined as dist(x, S) = min{dist(x, y) : y ∈ S}. 

For every integer k ≥ 1, the k-th power graph of graph G, denoted as Gk, is a graph 

with the same vertex set, and the set of edges such that two vertices are adjacent in Gk if 
and only if the distance between them is at most k in G, that is, V(Gk) = V(G) and 

E(Gk) = {xy : distG(x, y) ≤ k}. The line graph L(G) is defined as follows: the vertices of 

L(G) bijectively correspond to the edges of G, and two vertices of L(G) are adjacent if and 
only if the corresponding edges of G are adjacent. For a set H of graphs, graph G is called 
H-free if no induced subgraph of G is isomorphic to a graph in H. The complete graph on n 

vertices is denoted by Kn. For n ≥ 1, let Pn denote the chordless path on n vertices, and K1, n 

denote the star with center of degree n. For n ≥ 3, let Cn denote the chordless cycle on n 

vertices. For vertex-disjoint graphs G1 and G2, the disjoint union G1 ∪ G2 denotes the graph 

with the vertex set V(G1) ∪ V(G2) and the edge set E(G1) ∪ E(G2). 

For a positive integer k, a subset I of vertices of G is called k-independent set if the 
distance between any two distinct vertices in I is greater than k. The k-independence 

number of G, denoted αk(G), is defined as the maximum size taken over all k-independent 

sets of G. An 1-independent set is an independent set, and α1(G) = α(G) is the independ-

ence number of G. A subset D ⊆ V(G) is a k-dominating set of G if distG(x, D) ≤ k for each 

vertex x ∈ V(G) − D. The minimum size of a k-dominating set is called the k-domination 

number γk(G). Note that if k = 1, then γ1(G) = γ(G), the domination number of G. A subset 

F ⊆ E(G) is an k-edge cover of G if distG(x, F) < k for every vertex x ∈ V(G). The mini-

mum size of an k-edge cover is called the k-edge covering number ρk(G) of G. A clique is a 

set of pairwise adjacent vertices of G. The size of the largest clique in G is the clique 

number of G, denoted by ω(G). 

A set of pairwise independent edges of graph G is called matching, while matching of 
the maximum size is called maximum matching. The number of edges in a maximum 

matching of G is called the matching number of G and is denoted by α′(G). Recently, 

several authors have studied constrained matchings such as the ones with the bounded 
pairwise distance of edges. 

We introduce and study the following constrained matchings. A subset M of edges of 
G is called a distance-(k, l) matching if the pairwise distance of edges in M is at least k and 

at most l in G. In other words, relation k ≤ dist(e, e′) ≤ l holds for each pair e and e′ of dis-

tinct edges from M. We define distance-(k, l) matching number of G, denoted Σ(k, l)(G), as 
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the maximum size of the distance-(k, l) matchings of G. A maximum distance-(k, l) matching 

is a distance-(k, l) matching of size Σ(k, l)(G). 

Note that the distance-(1, ∞) matching is the ordinary matching, and hence, 
Σ(1, ∞)(G) = α′(G) for any graph G. However, not every distance-(k, l) matching is an ordi-
nary matching. Indeed, each subset M ⊆ E(G) is a distance-(0, ∞) matching of G, and thus, 
Σ(0, ∞)(G) = |E(G)|. The distance-(k, ∞) matchings were first introduced under the name of k-
separated matchings by Stockmeyer and Vazirani [22], and have recently been studied by 
Chang [8], Brandstädt and Mosca [4]. The distance-(2, ∞) matchings have also been studied 
under the names of induced matchings (i.e., matchings which form an induced subgraph in 
G) by Cameron [5] and strong matchings by Golumbic and Laskar [13]. Golumbic and 
Lewenstein [14] demonstrated applications of the induced matchings in developing secure 
communication channels, VLSI design and network flow problems. It is interesting to note 
that there is an immediate connection between Σ(2, ∞)(G) (the induced matching number) and 
the irredundancy number of a graph G; see [13] for details. Finally, the important problem 
of finding a strong edge-coloring in a graph G [10] is to partition the edge set of G into the 
minimum number of induced matchings. 

The distance-(0, 1) matchings were first introduced and investigated by Mahdian [18] 
under the name of antimatchings. This notion also appears in the context of chordal graphs 
as the neighborly set [5]. The distance-(1, 1) matchings are known in the literature as con-
nected matchings. This concept was introduced by Plummer, Stiebitz and Toft [21] in con-
nection with their study of the famous Hadwiger’s Conjecture. Connected matchings have 
been further studied by Cameron [6]. Note also that, if G is the complete graph K3, then 
Σ(0, 0)(G) = 3; while if G ≠ K3, then Σ(0, 0)(G) = Δ(G), where Δ(G) is the maximum degree of 
the graph G. 

Let k ≥ 1. It is easy to see that distG(e, e′) ≥ k for distinct edges e and e′ if and only if 
e and e′ are independent in the k-th power graph (L(G))k of the line graph of G. Thus, the 
following property holds: for any k ≥ 1 and graph G, the edge set M is a distance-(k, ∞) 
matching in G if and only if M is an independent set of vertices in (L(G))k. On the other 
hand, by similar considerations it is easy to see that the following property holds: for any 
l ≥ 1, set M ⊆ E(G) is a distance-(0, l) matching in G if and only if M is a clique in 
(L(G))l + 1. In particular, for all k, l ≥ 1 and any graph G, we have Σ(k, ∞)(G) = α((L(G))k) and 
Σ(0, l)(G) = ω((L(G))l + 1). 

Consider the following decision problem associated with the parameter Σ(k, l)(G). 
MAXIMUM DISTANCE-(k, l) MATCHING: Instance. A graph G and a positive integer K. 

Question. Is there a distance-(k, l) matching M in G such that |M| ≥ K? In other words, is 
Σ(k, l)(G) ≥ K? 

The MAXIMUM DISTANCE-(1, ∞) MATCHING problem is known to be solvable in 
polynomial time for general graphs [9]. On the other hand, Stockmeyer and Vazirani [22] 
have shown that for every k ≥ 2, the MAXIMUM DISTANCE-(k, ∞) MATCHING problem is NP-
complete even for bipartite graphs of maximum degree 4. Brandstädt and Mosca [4] have 
shown that for every k ≥ 1, the MAXIMUM DISTANCE-(2k + 1, ∞) MATCHING problem is NP-
complete for chordal graphs, while the MAXIMUM DISTANCE-(2k, ∞) MATCHING problem can 
be solved in polynomial time for these graphs. A number of papers [4, 5, 7, 8, 14−17, 19, 20] 
deal with the computational complexity of the MAXIMUM DISTANCE-(2, ∞) MATCHING 
problem. For k ∈ {0, 1}, the MAXIMUM DISTANCE-(k, 1) MATCHING problem is NP-complete 
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for general graphs [18, 21], but can be solved in polynomial time for chordal graphs and for 
graphs with no cycle of length 4 [6, 18]. 

The rest of the paper is organized as follows. In Section 2, we give lower and upper 
bounds on Σ(k, l)(G) in terms of certain parameters of G. In Section 3, we present NP-
completeness results for the MAXIMUM DISTANCE-(k, l) MATCHING problem and its 
weighted version, as well as some polynomially solvable cases. 

 
BOUNDS  ON  THE  DISTANCE-(k, l)  MATCHING  NUMBER 

 
The problem of finding Σ(k, l)(G) is NP-complete for arbitrary given or variable k and l. 

Therefore, developing good upper bounds on this parameter is of interest. Throughout this 
section we assume that k ≤ l ≤ ∞. 

Proposition 1. For k ≥ 1, if G is a connected graph with n ≥ k + 1 vertices, then 

Σ(2k, l)(G) ≤  (n − 1) /k  and Σ(2k + 1, l)(G) ≤  n /(k + 1) . 
The bounds in Proposition 1 are tight. To see this, consider a star K1, p where 

1 ≤ p ≤ k − 1 and construct graph G by subdividing each edge in K1, p exactly k times. Graph 

G has n = p(k + 1) + 1 vertices and Σ(2k, l)(G) = p. Consequently, Σ(2k, l)(G) =  (n − 1) /k . 
Further, consider a complete graph Kp, 1 ≤ p ≤ k, and construct G by attaching a path Pk + 2 
of length k + 1 to every vertex of Kp. This graph G has order n = p (k + 1) + p and 
Σ(2k + 1, l)(G) = p, therefore, Σ(2k + 1, l)(G) =  n /(k + 1) . 

More bounds on Σ(k, l)(G) are given below. 
Proposition 2. Let G be a connected graph. Then 
(a) if k ≥ 2, then Σ(k, l)(G) ≤ αk − 1(G) and Σ(k, ∞)(G) ≥ αk + 1(G), 
(b) if k ≥ 1, then Σ(2k, l)(G) ≤ ρk(G) and Σ(2k + 1, l)(G) ≤ γk(G). 

 
COMPLEXITY  RESULTS 

 
Throughout this section, we assume that 0 ≤ k ≤ l < ∞ and max{k, l} > 0. 
The proofs of the following four statements can be done by a polynomial transforma-

tion from the NP-complete problem CLIQUE [12]. 
Theorem 1. For any k ≥ 1 and l ≥ 0, the MAXIMUM DISTANCE-(2k, 2k + l) MATCHING 

problem is NP-complete for bipartite graphs. 
Theorem 2. For any k ≥ 0 and l ≥ 1, the MAXIMUM DISTANCE-(2k + 1, 2k + l + 1) 

MATCHING problem is NP-complete for bipartite graphs. 
Theorem 3. For any l ≥ 1, the MAXIMUM DISTANCE-(0, l) MATCHING problem is NP-

complete, and for any l ≥ 2 it is NP-complete even for bipartite graphs. 
Theorem 4. For any k ≥ 1, the MAXIMUM DISTANCE-(2k + 1, 2k + 1) MATCHING 

problem is NP-complete. 
Plummer, Stiebitz and Toft [21] proved that MAXIMUM DISTANCE-(1, 1) MATCHING is 

an NP-complete problem. Combining their result with Theorems 1 – 4, we obtain the fol-
lowing corollary: MAXIMUM DISTANCE-(k, l) MATCHING is NP-complete for arbitrary given 
or variable k and l. 

A weighted graph is a pair (G, w) including graph G and edge weights represented by 
a non-negative integer valued function w : E(G) → Z. The weight w(M) of a subset of 
edges M ⊆ E(G) is defined as the sum of the weights of edges e ∈ M. The weighted dis-
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tance-(k, l) matching number )(),( Glk
wΣ  of a weighted graph (G, w) is the maximum weight 

of a distance-(k, l) matching in (G, w). 
Consider the following problem associated with the parameter )(),( Glk

wΣ . 
MAXIMUM WEIGHT DISTANCE-(k, l) MATCHING: Instance. A weighted graph (G, w) 

and a positive integer K. Question. Is there a distance-(k, l) matching M in (G, w) such that 
w(M) ≥ K? In other words, is KGlk

w ≥Σ )(),( ? 

Edmonds [9] gave a polynomial algorithm for the MAXIMUM WEIGHT DISTANCE-(1, ∞) 
MATCHING problem on general graphs. In contrast, for each k ≥ 2, the MAXIMUM WEIGHT 

DISTANCE-(k, ∞) MATCHING problem is NP-complete even for special graphs [11]. We show 
that the complexity of the MAXIMUM WEIGHT DISTANCE-(k, l) MATCHING problem is similar. 

Theorem 5. For any k and l, the MAXIMUM WEIGHT DISTANCE-(k, l) MATCHING 
problem is strongly NP-complete for bipartite graphs, even if the edge weights can take 
only two values. 

Some polynomially solvable special cases for the MAXIMUM WEIGHT DISTANCE-(k, l) 
MATCHING problem are described below. 

Proposition 3. For any odd l ≥ 1, the MAXIMUM WEIGHT DISTANCE-(0, l) MATCHING 
problem can be solved in polynomial time for chordal graphs, and for arbitrary l ≥ 1, it can 
be solved in polynomial time for strongly chordal graphs (see Brandstädt et al. [3] for 
definitions of these graphs). 

Theorem 6. The MAXIMUM WEIGHT DISTANCE-(0, 1) MATCHING problem can be 
solved in polynomial time in the classes of (P5, kite, butterfly)-free and (K3 ∪ K2, K1, 3 ∪ K2, 
P4 ∪ K2, C4 ∪ K2)-free graphs. 

Kite is the graph consisting of five vertices u, v, w, x, y and edges uv, uw, vw, wx, xy. 
Butterfly is the graph obtained from kite by adding the edge wy. 

This work is partially supported from Belarusian BRFFR grants (projects F10FP-001 
and F11OB-064) and French CNRS grant (project PICS № 5379). Yu. Orlovich is also 
supported from grant № 478/39 of the Ministry of Education of the Republic of Belarus 
under the Program “Convergence”. 
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