Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/94321
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDobrovidov, A. V.-
dc.contributor.authorKoshkin, G. M.-
dc.date.accessioned2014-04-18T08:38:32Z-
dc.date.available2014-04-18T08:38:32Z-
dc.date.issued2010-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/94321-
dc.description.abstractRecent results in nonparametric bandwidth selection allow us to create data- based algorithms of automatic nonparametric signal Їltration. Such algorithms are based on the optimal Їltering equation and its nonparametric counterpart from the theory of nonparametric signal processing [1, 2]. This approach was developed for the case when state equation and probability distribution of unob- servable useful signal are unknown, but the observation equation and perturba- tion distribution are known completely. Term "automatic Їltration" means that the output data of the observation equation is only used to derive a nonparamet- ric signal Їltration equation. The estimation equation contains a term that is a non-parametric estimator of logarithmic derivative of density, which depends on bandwidths for probability and its derivative estimates. Using the results of [3, 4] for bandwidth selection by Smoothed Cross-Validation method, we give an automatic Їltration method. To obtain a stable non-parametric estimator of log- arithmic density derivative some regularization procedure is used that is named piecewise smooth approximation [5]. Modeling was carried out to compare the behavior of nonparametric estimates with the optimal Kalman ones.ru
dc.language.isoenru
dc.publisherMinsk: BSUru
dc.subjectЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатикаru
dc.titleAutomatic nonparametric signal filtrationru
dc.typeconference paperru
Располагается в коллекциях:PLENARY LECTURES

Полный текст документа:
Файл Описание РазмерФормат 
P1-DobrovidovKoshkin.pdf159,56 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.