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Abstract

Recent results in nonparametric bandwidth selection allow us to create data-
based algorithms of automatic nonparametric signal filtration. Such algorithms
are based on the optimal filtering equation and its nonparametric counterpart
from the theory of nonparametric signal processing [1, 2]. This approach was
developed for the case when state equation and probability distribution of unob-
servable useful signal are unknown, but the observation equation and perturba-
tion distribution are known completely. Term ”automatic filtration” means that
the output data of the observation equation is only used to derive a nonparamet-
ric signal filtration equation. The estimation equation contains a term that is
a non-parametric estimator of logarithmic derivative of density, which depends
on bandwidths for probability and its derivative estimates. Using the results of
[3, 4] for bandwidth selection by Smoothed Cross-Validation method, we give an
automatic filtration method. To obtain a stable non-parametric estimator of log-
arithmic density derivative some regularization procedure is used that is named
piecewise smooth approximation [5]. Modeling was carried out to compare the
behavior of nonparametric estimates with the optimal Kalman ones.

1 Introduction

More than twenty years ago there were developed nonsupervised methods of extraction
of useful stochastic signal with unknown distribution from mixture with noise distur-
bances [1]. In this approach it is assumed that noise distribution is known because
often there is an opportunity to observe noise without signal and one can restore the
sufficient noise distribution approximation given noise observation. Inverse situation –
signal observation without noise – is very sparse (unreal case). So, in this situation the
restoration of pure signal distribution is impossible, and signal distribution is assumed
to be unknown for this approach.

The methods mentioned above were gathered in the theory of nonparametric signal
estimation published in [2] (1997) and in [5](2004) in Russia. The principal result of this
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theory concerning the problem of filtration is the optimal filtration equation of Markov
processes, represented in the form explicitly independent of unknown distribution of
useful stochastic signal. Such form is possible when noise distribution and observation
equation make up a so called exponential pair, i.e. the family of conditional observation
densities under fixed useful signal constitutes a conditionally-exponential family [2].
This family, particularly, contains gaussian density

f(xn|sn) =
1√
2πσ

exp

{
−(xn − sn)2

2σ2

}
, xn ∈ R, sn ∈ R, (1)

which as an example will be considered in this paper for simplicity. It follows from
expression (1) that observation equation represents an additive model

Xn = ASn + Bηn, (2)

where A and B = σ are known constants, Xn is an observation, Sn is an unobservable
signal, and ηn is a noise perturbation at the time n. In this approach an important
assumption is made that (Xn, Sn) is Markovian process. This example clearly demon-
strates an opportunity of proposal approach.

The problem is to design an optimal in mean square sense estimator Ŝn of a useful
signal Sn at moment n from given observations Xn

1 = (X1, . . . , Xn). As is well-known
the optimal estimator of Sn is a conditional mean Ŝn = E[Sn|Xn

1 = xn
1 ]. This conditional

mean can be calculated by method of transformation for posterior probabilities if the
state equation in Sn is specified. In the case of linear state equation, for instance,

Sn+1 = aSn + bξn, (3)

where ξn is gaussian noise, Kalman filter is optimal, and for its construction it is nec-
essary to know (3) exactly. Such information frequently is not available for users. Are
there any ways to circumvent the necessity to know signal state equation? One of this
ways is the empirical Bayes approach, by following which one can design an equation
for conditional mean Ŝn without information about state equation (3). For this design
in our example it is only necessary the information about observation equation of the
type (1). Then the equation for optimal estimator Ŝn takes on a form

Ŝn =
B2

A

∂

∂xn

ln f(xn|xn−1
1 ) +

xn

A
, (4)

where f(xn|xn−1
1 ) is a conditional density of observation xn at given previous observa-

tions xn−1
1 . Unlike Kalman filter equation (4) for Ŝn is not recurrent. The conditional

density f(xn|xn−1
1 ) can not be exactly calculated if the equation (4) is unknown. How-

ever it can be restored from observations xn
1 with the demanded degree of precision,

using nonparametric kernel method of estimation from dependent data [5]. According
to this method we must replace the unknown density f(xn|xn−1

1 ) by truncated density
f̄(xn|xn−1

n−τ ), where τ is degree of dependence of observable process (Xn). Per se τ rep-
resents an order of connectivity of Markov process approximating the non-Markovian



process (Xn). By definition f̄(xn|xn−1
n−τ ) = f(xn

n−τ )/f(xn−1
n−τ ). Then

∂

∂xn

ln f̄(xn|xn−1
n−τ ) =

∂/∂xnf(xn
n−τ )

f(xn
n−τ )

, ψ(xn
n−τ ). (5)

The denominator in the latest formula represents a (τ + 1)-dimensional marginal
density, the nonparametric kernel estimate for this density can be written as following:

f̂(xn
n−τ ) = n−1h−(τ+1)

n

n−τ−1∑
i=1

τ+1∏
j=1

K

(
xn−j+1 − xn−j−i+1

hn

)
. (6)

The nonparametric estimate for the numerator of (5) can be represented as

f̂ ′(xn
n−τ ) = n−1h

−(τ+2)
1n

n−τ−1∑
i=1

K ′
(

xn−j−i+1 − xn−j+1

h1n

) τ∏
j=1

K

(
xn−j+1 − xn−j−i+1

h1n

)
,

(7)

where f ′, K ′ denote the partial derivatives with respect to xn.
So, the nonparametric estimate for logarithmic density derivative ψ(xn

n−τ ) can be
written as

ψ̂n(xn
n−τ ) =

f̂ ′(xn
n−τ )

f̂(xn
n−τ )

. (8)

For calculating (8) it remains only to select bandwidths hn in (6) and h1n in (7).

2 Bandwidth selection for densities and their

derivatives

For the time being, several data-based selection methods of the kernel function band-
width are known of which the methods of cross-validation CV [6, 7], smoothed cross-
validation SCV [8], and plug-in [9] seem to be the basic ones as the most clear and
rapidly converging procedures. In [4] the method SCV developed in [3] for density es-
timation was extended to the kernel estimates of the density derivatives. Both of this
methods generate data-based bandwidth estimates with a higher rate of convergence
and substantially smaller scatter than in CV methods.

Here a measure of distance between the true object f (r)(·) and its estimator f
(r)
n (·)

is selected as a mean integrated square error (MISE)

MISEr(h) = E

∫ (
f̂

(r)
h (x)− f (r)(x)

)2

dx, r = 0, 1, f (0)(x) = f(x). (9)

This criterion depends on bandwidth h, and it would be natural to select such h, that
will minimize MISEr(h). Unfortunately it can’t be done directly because the true
object f (r)(·) is unknown. Therefore we will try to construct an estimate of MISEr(h),



which will be minimized over h. This will be done by using the aforementioned SCV
method for criterion MISE(h). Applying gaussian kernels K(·) in (6), it provides for
the expression [8]

SCV (h)=
1

2
√

πnh
+

1

n(n− 1)

n∑
i=1

n∑

j 6=i

{
ϕ√

2h2+2g2−2ϕ√
h2+2g2 +ϕ√2g

}
(xi−xj), (10)

where a new constant g is responsible for data presmoothing. Selection of g in turn is
performed by minimization of mean square error of bandwidth estimate ĥn(g), which
minimizes (10). It brings to the following expression:

ĝ =

(
15

16
√

πν6

)1/7

n−1/7, (11)

where ν2k =
∫

f (2k)(x)f(x)dx, k = 0, 4.
Analogous technique provides an estimate for derivative MISE1 in the more complex

form [4]

SCV1(h1) =
1

4
√

πnh3
1

+
1

n

(
1

4
√

πg3
− 2√

2π(h2
1 + 2g2)3/2

+
(n− 1)/n√

2π(2h2
1 + 2g2)3/2

)
+

+
1

n2

n∑
i=1

n∑

j 6=i

2g2 − (xi − xj)
2

(2g2)2
ϕ√2g(xi − xj)− (12)

− 2
1

n2

n∑
i=1

n∑

j 6=i

h2
1 + 2g2 − (xi − xj)

2

(h2
1 + 2g2)2

ϕ(h2
1+2g2)1/2(xi − xj) +

+
n− 1

n

1

n2

n∑
i=1

n∑

j 6=i

2h2
1 + 2g2 − (xi − xj)

2

(2h2
1 + 2g2)2

ϕ(2h2
1+2g2)1/2(xi − xj),

where g minimizing the mean square error of ĥ1(g) is defined as

ĝ1 =

(
105

32
√

πν8

)1/9

n−1/9. (13)

Both formulae (11) and (13) contain parameters ν6 and ν8, which are dependent
from unknown density f(x) and its derivatives. They are also can be estimated using
cross-validation method for density and rule of thumb for higher derivative. In the end
we get the following data-based expressions:

ν6 =
1

n(n− 1)

n∑
i=1

n∑

j 6=i

1

σ̂6

(
b6
ij

σ̂6
− 15

b4
ij

σ̂4
+ 45

b2
ij

σ̂2
− 15

)
ϕ1(bij), (14)

ν8 =
1

n(n− 1)

n∑
i=1

n∑

j 6=i

1

σ̂8

(
b8
ij

σ̂8
− 28

b6
ij

σ̂6
+ 210

b4
ij

σ̂4
− 420

b2
ij

σ̂2
+ 105

)
ϕ1(bij), (15)



where ϕ1(·) is the standard gaussian density, bij = (Xi − Xj), and σ̂ is the standard
rms deviation calculated from the sample X1, . . . , Xn.

Now everything is ready for modeling the algorithm of automatic nonparametric
filtration of the unknown signal from additive mixer with noise according the equa-
tion (2).

3 Regularized estimate

The statistics ψ̂n(xn
n−τ ) in expression (8), representing the ratio of density derivative

estimate to density estimate, is unstable when denominator is near zero. To circum-
vent this drawback it is proposed some regularized procedure, called piecewise smooth
approximation [5]. In special case this procedure coincides with the Tychonoff regular-
ization method. Using this procedure we may design a stable statistics

ψ̆(xn
n−τ ) =

ψ̂n(xn
n−τ )

1 + δ|ψ̂n(xn
n−τ )|4

, (16)

where optimal value for δ is defined by expression

δopt =

∫
u2

(
ψ̂n(xn

n−τ )
)

ω(xn
n−τ )dxn

n−τ +

∫
b
(
ψ̂n(xn

n−τ )
)

ψn(xn
n−τ )ω(xn

n−τ )dxn
n−τ

∫ (
ψn(xn

n−τ )
)6

ω(xn
n−τ )dxn

n−τ +

∫
b
(
ψ̂n(xn

n−τ )
) (

ψn(xn
n−τ )

)5
ω(xn

n−τ )dxn
n−τ

.

(17)

Here

u2
(
ψ̂n(xn

n−τ )
)

= E
(
ψ̂n(xn

n−τ )− ψ(xn
n−τ )

)2

and
b
(
ψ̂n(xn

n−τ )
)

= Eψ̂n(xn
n−τ )− ψ(xn

n−τ )

are the mean square error and the bias of the estimate ψ̂n(xn
n−τ ) accordingly.

To facilitate finding of the integrals in (17) we take the weight function ω(x) =
f 2(x). Notice that all functions in the integrals of (17) must be estimated preliminary
to calculate the parameter δopt.

4 Modeling results

First of all in modeling we must generate a sequence of dependent observations, using
the state equation (3) for Sn and observation equation (2) for Xn. The exact infor-
mation about both mentioned equations gives us the opportunity to design Kalman
filter with respect to optimal estimate Ŝn. The filter equation is well known and isn’t
represent here.



When the state equation is unknown, we make use of nonparametric counterpart
of the optimal equation (4), which, taking into account expressions (6), (7), can be
represented as

S̃n =
B2

A
ψ̂n(xn

n−τ ) +
xn

A
, (18)

where

ψ̂n(xn
n−τ ) =

h
−(τ+3)
1n

∑n−τ−1
i=1 (xn−j−i+1 − xn−j+1)

∏τ
j=1exp

(
−(xn−j+1 − xn−j−i+1)

2

2h2
1n

)

h
−(τ+1)
n

∑n−τ−1
i=1

∏τ+1
j=1 exp

(
−(xn−j+1 − xn−j−i+1)

2

2h2
n

)

(19)

is a nonparametric estimate of ψ(xn
n−τ ).

This nonparametric estimate is a substitution estimate (SE). Unfortunately SE is
unstable when denominator of (19) possesses a small values. In this case the esti-
mate may have spikes, which can be seen in Fig.1. This spikes are sharply impaired
the performance of SE (look at table). To eliminate the spikes we use the regular-
ization method, introduced in (16). In our modeling example this method is reduced
to replacement the expression ψ̂n(xn

n−τ ) in (18) by the approximation (16), where δ is
defined by expression (17). Unfortunately the direct calculation of (17) is impossible
in view of lack of knowledge about true density and only some estimate is possible,
that will be calculated in the next paper. Now in modeling we let δ = 0.05, bearing in
mind that we can’t make worse the substitution estimate more then 5% in the absence
of spikes. The equation for regularized estimation takes the form

S̆n =
B2

A
ψ̆n(xn

n−τ ) +
xn

A
.

Comparison of nonparametric estimates S̃n and S̆n with optimal Kalman estimate Ŝn

is carried out by calculating the relative error ε in percentage

ε =
unon − ukal

ukal

100, (20)

where unon = (ũnon or ŭnon), ũnon = (1/n
∑

k (Sk − S̃k)
2)1/2, ŭnon = (1/n

∑
k (Sk − S̆k)

2)1/2,

and ukal = (1/n
∑

k (Sk − Ŝk)
2)1/2. Nonparametric estimates S̃n and S̆n together with

optimal Kalman estimate Ŝn are represented in Fig.1 and Fig.2.
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Fig. 1. Comparison of nonparametric and optimal Kalman filtration with spikes

200 220 240 260 280 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

                                                                                                                               time   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
E

st
im

at
es

 

 
Kalman
Substitution
Regularized

Fig. 2. Comparison of nonparametric and optimal Kalman filtration without spikes

It is easy to note that discrepancy ε between both estimates is very little when the
spikes is out. But when the spikes are present the advantage of the regularization
procedure becomes obvious.

The distances between nonparametric estimates S̃n and Sn and optimal Kalman
estimate Ŝn in ε-units are reflected in Table.

Table 1:
Measure of closeness of estimates S̃n and S̆n

to Kalman estimate Ŝn

Substitution ε̂ Regularized ε̆ Spikes
83,13% 1,42% yes
1,13% 1,31% no
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