Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/340623Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Tanyhina, A. N. | - |
| dc.date.accessioned | 2026-01-23T09:17:56Z | - |
| dc.date.available | 2026-01-23T09:17:56Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Журнал Белорусского государственного университета. Математика. Информатика = Journal of the Belarusian State University. Mathematics and Informatics. – 2025. – № 3. – С. 6-14 | ru |
| dc.identifier.issn | 2520-6508 | - |
| dc.identifier.uri | https://elib.bsu.by/handle/123456789/340623 | - |
| dc.description.abstract | The article deals with the generalised Newton – Kantorovich method for solving non-linear operator equations of the form f (x)+ g (x) = 0 in Banach spaces, where f is the operator satisfying the regular smoothness condition; g is the non-difgerentiable operator satisfying Lipschitz condition. The main convergence theorem is proved under the modifjed regular smoothness condition in which increments of the operator f derivative are majorised by the increments of a scalar function. | ru |
| dc.language.iso | en | ru |
| dc.publisher | Минск : БГУ | ru |
| dc.rights | info:eu-repo/semantics/openAccess | ru |
| dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
| dc.title | Generalised Newton ‒ Kantorovich method under the modifjed regular smoothness condition | ru |
| dc.title.alternative | Обобщенный метод Ньютона – Канторовича при модифицированном условии регулярной гладкости / А. Н. Таныгина | ru |
| dc.type | article | ru |
| dc.rights.license | CC BY 4.0 | ru |
| dc.description.alternative | Рассматривается обобщенный метод Ньютона – Канторовича для решения в банаховых пространствах нелинейных операторных уравнений вида f (x)+ g (x) = 0, где f – регулярно гладкий оператор; g – недифференцируемый оператор, удовлетворяющий условию Липшица. Приводится доказательство основной теоремы о сходимости метода при модифицированном условии регулярной гладкости, в записи которого приращения производной оператора f мажорируются приращениями скалярной функции. | ru |
| Appears in Collections: | 2025, №3 | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

