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ОБОБЩЕННЫЙ МЕТОД НЬЮТОНА ‒ КАНТОРОВИЧА  
ПРИ МОДИФИЦИРОВАННОМ УСЛОВИИ  

РЕГУЛЯРНОЙ ГЛАДКОСТИ

А. Н. ТАНЫГИНА1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация. Рассматривается обобщенный метод Ньютона – Канторовича для решения в банаховых простран-
ствах нелинейных операторных уравнений вида f x g x� � � � � � 0, где  f  – регулярно гладкий оператор; g – недиффе-
рен цируемый оператор, удовлетворяющий условию Липшица. Приводится доказательство основной теоремы 
о схо ди мости метода при модифицированном условии регулярной гладкости, в записи которого приращения про-
изводной оператора  f  мажорируются приращениями скалярной функции.

Ключевые слова: обобщенный метод Ньютона – Канторовича; условие регулярной гладкости; нелинейное 
операторное уравнение.
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GENERALISED NEWTON ‒ KANTOROVICH METHOD  
UNDER THE MODIFIED REGULAR  

SMOOTHNESS CONDITION

A. N. TANYHINAa

aBelarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract. The article deals with the generalised Newton – Kantorovich method for solving non-linear operator equa-
tions of the form f x g x� � � � � � 0 in Banach spaces, where  f  is the operator  satisfying the regular smoothness condition; 
g is the non-differentiable operator satisfying Lipschitz condition. The main convergence theorem is proved under the 
modified regular smoothness condition in which increments of the operator  f  derivative are majorised by the increments 
of a scalar function.

Keywords: generalised Newton – Kantorovich method; regular smoothness condition; non-linear operator equation.

Introduction

Let X and Y  be Banach spaces,  f  and g be non-linear operators defined on the closed ball B x R X0,� ��  and 
taking values in Y, where the operator  f  is differentiable at every interior point of B x R0,� � and the operator g 

is non-differentiable. One of the most effective iterative methods for solving operator equations of the form
 f x g x� � � � � � 0  (1)
is the generalised Newton ‒ Kantorovich method with successive approximations

 x x f x f x g x nn n n n n�

�
� � �� ��� �� � � � � �� � � �1

1
0 1, , , ,  (2)

where x0 is given.
A thorough convergence analysis of the sequence (2) was carried out in the work [1] by means of the approach 

based on the application of majorant scalar equations and originating from L. V. Kantorovich’s investigations [2]. 
However, the hypotheses given there are difÏcult to verify and for this reason a more flexible approach for 
solving the equation (1) was proposed in the research [3].

In the case when g = 0, the most precise error estimates for the process (2) were obtained by A. Galperin 
and Z. Waksman in [4; 5]. These results were generalised in the article [6] under the assumption that the opera tor  f  
satisfies the regular smoothness condition introduced in the works [4; 5], and the operator g satisfies Lip schitz 
con dition from the paper [3]

 g x g x t x x x x B x t��� � � �� � � � � �� � � � � ��� � �� , , ,0  (3)

where ψ is non-decreasing function on 0, .R� �  However, the meaning of the regular smoothness concept from 
the works [4; 5] is quite complex and it was shown in the research [7] that it may be replaced by a simpler 
one in which increments of the derivative ′f  are majorised by increments of a scalar function. The aim of this 
article is to prove the main convergence theorem for the process (2) under the modification of Galperin – Waks-
man condition from the paper [7].

Main concepts and preliminary results
Let � : , ,0 0�� �� �� � is a continuous strictly increasing concave function that vanishes at zero: � 0 0� � � . 

Assume without loss of generality that �� � �f x I0 . Let

h f f x x B x R� � � �� � � � �� �inf : , .0

In accordance with the article [5] the operator  f  is ω-regularly smooth on B x R0,� � (or, equivalently, ω is a re-
gular smoothness modulus of  f  on B x R0, ),� �  if there exists h h f� � ��� ��0,  such that the inequality

 � �� �� ��� � � � ��� � � � �� �� � � � ��� �� � � ��� �1 1h x x f x f x h x x x xf f, , ,  (4)
where

h x x f x f x hf
� ��� � � � �� � � ��� �� � �, min , ,
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holds for all � ��� � �x x B x R, , .0  The operator  f  is called regularly smooth on B x R0, ,� �  if it is ω-regularly smooth 
on B x R0,� � for some ω with such properties.

It was shown in the paper [7] that the condition (4) may be replaced by a simpler condition

 � ��� � � � �� � � � � ��� �� � � ��� �� � � � � ��� �� �� �� �
f x f x r x x x x r x x� � � � ,  (5)

where � �� �� ��1
1 h ; r x x x x� � � �� �� �min , ;0 0  � �� � � �max , .0  This condition is clearer than the condi-

tion (4). Moreover, in the work [5] this condition is used in the proof of some auxiliary statements and the main 
theorem about the convergence of the classical Newton ‒ Kantorovich method. If χ increases, then the value 
of � � � ��� �� ��r x x  also increases and the right part of the condition (5) decreases. Therefore, the higher is 
the value of χ, the better is the estimate for � ��� � � � �� �f x f x , which leads to more accurate estimates for suc-
cessive approximations. In the paper [8] the comparative analysis of the regular smoothness and the Hölder 
continuity conditions for the equation (1) in the case, when g = 0, was carried out.

Let � t d

t

� � � � ��� � �
0

, � t d

t

� � � � ��� � �,
0

 a is a positive number such that a f x g x� � � � � �0 0 , � �� � ��
�

�
�

�
0 1

1
,  

is a constant. Let us define a function with numeric argument

 W t a t t t� � � � � � � �� � � � � �� � � � �� � �� � � �1 ,  (6)

and the numerical sequence t
n� � as follows:

 t t
W t

t
n

n n

n

n

� � �
� �

� � � � �� ��� ��
� �1

1
0 1

� � � �
, , , ,  (7)

where t0 = 0. 
Lemma 1. Let us suppose that the function (6) has a unique zero t�� � �0, �  and 

 a � � � � � � � � � �� �� �� � � � .  (8)
Then the sequence (7) is defined for all n, monotonically increases and converges to t∗.

P r o o f. The function W is positive on 0, ,t�� �  since t∗ is a unique zero of the equation W t� � � 0, W a0 0� � � �  

and W is continuous on 0, .�� �  Hence the function

u t
W t

t
� � � � �

� � � � �� ��� ��1 � � � �
is positive on 0, .t�� �

Let us show that the function t u t� � � is non-decreasing on 0, .t�� �  In fact,

t u t u t
W t

t

W t

� � �� �� � � �� � � �
� �

� � � � �� ��� ��

�

�
�
�

�

�
�
�

�
�

� �
��

1 1
1

1

� � � �

�� � �� � � � �� � � � � � �� �
� �� � � � �� �

�

�
�� � � �

1

1

1

2

� � � � � �

� � � �

� �

t W t t

t

t t
 �� � � � �� � � � � � �� �
� �� � � � �� �

�
� � � �

� � � �

W t t

t1
0

2

on 0, .t�� �  This implies that the sequence t
n� � monotonically increases and

t t u t t u t t
n n n� � � �� � � � � � � � �1

for t t
n
� �. Consequently, the sequence t

n� � converges to t t�� ��� �0,  and t t u t�� �� ��� � � �, hence W t��� � � 0. 
Since t∗ is a unique zero of W in 0, ,�� �  it follows that t t�� �� .

The sequence t
n� � is defined for all n. In fact, it is clear from the condition (8) that W a W�� � � � � � �0 0  and 

hence there exists � ��� �0,  such that W �� � � 0. Consequently, � � ��
� �

t t
n

n
lim  and t

n
� �� � for all n = 0, 1, … . 

Because of the monotonicity of ω, the inequality � � �� � �t
n

0 is true for all n = 0, 1, … . Lemma 1 is proved.
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Lemma 2. Let us suppose that there exists a constant � �� � ��
�

�
�

�
0 1

1
,  satisfying the condition (8), the ope­

rator f satisfies the condition (5) on B x R0,� � with such χ, the operator g satisfies the condition (3), and the func­
tion (6) has a unique zero t R� �  in 0, .�� �  Then the equation (1) has a unique solution in B x t0, .�� �

P r o o f. Let us prove the existence of a solution in B x t0, .�� �  We consider the sequence

u Du n u x
n n� � � � �1 0 00 1, , , ; ,

where D I f x f g I f g� � �� ��� �� �� � � � �� ��
0

1
, and the numerical sequence

� � �
n n

d n� � � � � � �1 00 1 0, , , ; ,

where d t t W t� � � � � �. Since
�� � � � �� � � � � � �� � � � � �d t W t t t1 0� � � � �

for all t�� �0, ,�  the function d is monotonically increasing on 0, .�� �
For all n = 0, 1, … the inequality

 �
n
t� �  (9)

holds. In fact, for n = 0 the inequality (9) is obvious: �0 0� �
�

t . Let us suppose that the inequality (9) holds 
for all n ≤ k. Then from �k t� �, because of the monotonicity of d, we obtain d d tk�� � � � �� , that is �k t� ��1 . 

Consequently, by the induction hypothesis, the inequality (9) is true for all n.
Let us prove by induction that the sequence �n� � is monotone. Clearly, 0 0 1� � �� � a. We suppose that 

� �k k� � 1. Then � � � �k k k kd d� � �� � � � � � �1 1 2. Thus, the sequence �n� � is monotonically increasing and boun-
ded from above. Consequently, it converges to some ��� ��0, .t  If n → ∞ in � � �

n n n
W� � � � �1 , we obtain 

W �� � � 0 and � � �t .
Let us show that for all n = 0, 1, … the inequality

 u u
n n n n� �� � �1 1� �  (10)

holds. For n = 0 the inequality (10) is obvious:

u u x f x g x x f x g x a W1 0 0 0 0 0 0 0 1 0= = = 0 = .� � � � � � �� � � � � � � � � � � �� �

We suppose that the inequality (10) holds for all n < k. Then

u u Du Du u u f u f u g u g uk k k k k k k k k k� � � � �� � � � � � � � � � �� � � � � � � �� � �1 1 1 1 1

� � � � � � � �� � � � � � � � �� � �u u f u f u g u g uk k k k k k1 1 1

� �� � � �� � � � � � � � � �� � �
0

1

0 1 1f u f x u u dt g u g ut k k k k

� � �� � � �� � � � �� �� �� � � � � � ��
� �

�
0

1

0 0 0 1� � � �u x u x u x u u dt g u g ut t t k k k k ��� �1 ,

where u u t u ut k k k� � �� �� �1 1 , 0 ≤ t ≤ 1. By the induction hypothesis,

u x u u u uk k

j

k

j j

j

k

j j k� � � � � � �� � �
�

�

�
�� �0 0

1

1

1

1� � � .

Consequently,

u x t u u t u u t u u t u u t
t k k k k k
� � �� � �� � � �� � � �� � � � � � �� �� � �0 1 0 0 1 0 01 1 1 � 11 � t k

� .

From the condition (3) and the proposition 1 in article [3] it follows that

 g x g x t x x t x B x t x x R t��� � � �� � � � �� � �� � � � � � �� � � �� � � � �� � 0, , .  (11)

Because of the concavity of ω and the inequality (11), we have
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u u u x u x u x u u dt
k k t t t k k�

� �
�� � � �� � � �� � � � �� �� �� � � ��1

0

1

0 0 0 1� � � �

� � �� � � � � �� � �� �� �k k k ku u1 1 1

� � � � � �� �� � �� � � � � � � � �� � �
0

1

0 1 1� � � � � � � �u x dt
t k k k k

� �

� � � � � �� � �� �� �� � �� � � � � � � � �� � � �
0

1

1 1 11� � � � � � � � � �t t dtk k k k k k� �

� � � � �� �� � � � � � � � � � � � � � � �
�

� � � �
�

�

� � � � � � � � � � � �
k

k

d d dk k k k k

1

1 1 1� � kk.

Thus, the inequality (10) holds for n = k.
It follows from the inequality (10) that for m > n

u u u u u um n m m n n m m n n m n� � � � � � � � � � � � � � �� � � �1 1 1 1� � � � � � .

Hence for all m and n
 u um n m n� � �� � .  (12)

Since the sequence �n� � converges to t∗, it follows from the inequality (12) that the sequence u
n� � also con-

verges to some x∗. Further
u u t n
n n
� � � � ��0 0 1� , , , ,

and, consequently, all un with x∗ belong to B x t0, .�� �  If n → ∞ in u Du
n n� �1 , we obtain that x D x� �� � �, or 

f x g x� �� � � � � � 0. Thus, x∗ is a solution of the equation (1) in B x t0, .�� �
To prove the uniqueness of the solution x∗ in B x t0, �� � let us consider the second solution x B x t�� �� � �0,  of 

the equation (1) and show that for all n = 0, 1, … the inequality

 x u t
n n�� �� � � �  (13)

holds. For n = 0 the inequality (13) is obvious:

x x t t�� � �� � � �0 0� .

We suppose that inequality (13) holds for all n ≤ k. Then

x u x Du x u f u g uk k k k k�� � �� ��� � � � � � � � � � � �1

� � � � � � � �� � � � � � � � ��� �� ��f u f x u x g u g xk k k

� � � � � � � �� � �� � � � � � � � ��� �� ��f u f x f x u x g x g uk k k0

� �� � � �� � � � � � � � � �� �� ��
0

1

0f u f x u x dt g x g ut k k

� � �� � � �� � � � �� �� �� � � � � � ��
� �

�� ��
0

1

0 0 0� � � �  u x u x u x u x dt g xt t t k gg uk� � ,

where u x t u xt k� � �� ��� �� , 0 ≤ t ≤ 1. Further

u x t x x t u x t x x t u x t t tt k k� � �� � �� � � �� � � �� � � � � � �� � ��� �� �0 0 0 0 01 1 1 ��k .

Because of the concavity of ω, the inequality (11) and the induction hypothesis, we have
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x u u x t dt x u
k t k k k k�� � � ��� � � � � � �� �� � �� � � � �� � � � ��1

0

1

0
� � � � � � � � � ��

� � � � � �� � �� �� �� � �� � � � � � � � �� � � �
0

1

1� � � � � � �t t t t dt tk k k� �

� � � � �� �� � � � � � � � � � � � � � � �
�

� � � ��
�

� � � � � � � � �
k

t

k k k
d t d t d t� � 1.

Hence the inequality (13) holds for n = k + 1. If n → ∞ in the inequality (13), we obtain that
x x t t�� � � �� � � � 0

and hence x x�� �� . Lemma 2 is proved.
Let us denote for all n = 1, 2, …

r f x f x f x x xn n n n n n� � � � � � � �� � �� �� � �1 1 1 .

Lemma 3. Let us suppose that there exists a constant � �� � ��
�

�
�

�
0 1

1
,  satisfying the condition (8), the ope rator  f 

satisfies the condition (5) on B x R0,� � with such χ , the operator g satisfies the condition (3), the function (6) 
has a unique zero t��� �0, � , and the sequence t

n� � is defined by the recurrence formula (7). If  for all 1 ≤ k ≤ n 

successive approximations xk are defined and satisfy the inequality

 x x t tk k k k� � �� �1 1,  (14)
then

 r a t t t
n n n n
� � � � � �� � � � � �� � � � ��� � �� � � �1 1 .  (15)

P r o o f. Let x x t x x
t n n n
� � �� �� �1 1 , 0 ≤ t ≤ 1. Then

r f x f x x x dt
n t n n n
� �� � � �� � � �� � �
0

1

1 1

� � � �� � � ��
�
�

�
�
� � � � �� ��

�
�

�
�
�

�

�
�� �

�

� �

�

0

1

1 1 1� � � �r x x x x r x x
t n t n t n

��

�
� � �x x dt

n n 1 ,

where r x x
n

� ��1 0 .

Since for all 1 ≤ k ≤ n the inequality (14) holds, it follows that

x x x x t t t
n

k

n

k k

k

n

k k n�

�

�

�

�

�

� �� � � � �� � �� �1 0

1

1

1

1

1

1 1

and

x x x t x x x t x x t t t
t n n n n n n n n n
� � � �� � � � � � �� �� � � � � �1 1 1 1 1 1 .

According to lemma 1, t
n
� � for all n = 0, 1, … . Hence

� � � �� � � � � � �� � � �� � � �� � �� � �� � � �r x x t t t t t t t t
t n n n n n n1 1 1 11 0

and, because of the concavity and the monotonicity of ω,

r t t t t t t t dt
n n n n n n n
� �� � � � � �� �� �� � �� � �� � � � �
0

1

1 1 1 1� � � �

� �� � �� � � � � �� �
�

�

�

�� � � � �

�

�

t t t d
n n n

t

t

n

n

1 1
1
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� �� � �� � � � � � � � �� �

� �

� �
�

� � � � � � � �
� �

t t t d d
n n n

t t
n n

1 1

0 0

1

� �� � �� � � �� � � �� �� � �� � � �t t t t t
n n n n n1 1 1� � .

Let us show that for all n = 0, 1, … the equality

 � � � � � ��� � �� � � �� � � � � �� � � � � � � � �� �t t t t t t a
n n n n n n1 1 1� � �  (16)

holds. In fact, by the definition of the sequence t
n� �

t t t a t t t
n n n n n n� �� � � � � � �� �� � � � � � � �� � � � � �� � � � �1 1 1� � � � � � � �� � �

and

t t t a t t
n n n n n
�� � � � � � �� �� � � � � � � �� � � � � �� � �� � � �1 1 1 11 1� � � � � � � �� � �� t

n �� �1 .
It follows from the first of these equalities that

a t t t t t tn n n n n n� � � � � � �� � � �� � �� � � �� � � � �� �� � �� � � � � �1 11
and from the second that

a t t t t t tn n n n n n� � � � � � �� � � �� � �� � � �� � � � �� � � �� � �� � � � � �1 1 1 1 1 .

Consequently,
� � � � ��� � �� � � �� � � � � �� � � � � �� �t t t t t t

n n n n n n1 1 1� �

� �� � �� � � �� � � � � �� � � � �� � � �� � � � �t t t t t t
n n n n n n1 1 1 11� �

for all n = 1, 2, … and
� � � � ��� � �� � � �� � � � � �� � � � � �� �t t t t t t

n n n n n n1 1 1� �

� �� � �� � � �� � � � � �� � � � � �� � � � �t t t t t t0 1 0 0 1 01� �

� � � � � � � � � �� � � � � �� � � � � �a a a� �1 .

Thus, the equality (16) holds for all n = 0, 1, … and the estimate for rn may be rewritten in the form of the ine-
quality (15). Lemma 3 is proved.

Convergence theorem
Theorem. Let us suppose that there exists a constant � �� � ��

�
�
�

�
0 1

1
,  satisfying the condition (8), the ope ra­

tor f satisfies the condition (5) on B x R0,� � with such χ , the operator g satisfies the condition (3), and the func-

tion (6) has a unique zero t R� �  in 0, .�� �  Then the  following conditions are met:
1) the equation (1) has a unique solution x∗ in B x t0, �� �;
2) the successive approximations (2) are defined for all n = 0, 1, … and belong to B x t0, �� �  as well as con­

verge to x∗;
3)  for all n = 0, 1, … the inequalities

 x x t tn n n n� �� � �1 1 ,  (17)

 x x t tn n� �� � �  (18)
hold, where the sequence t

n� � is defined by the recurrence  formula (7), monotonically increases and converges to t∗.
P r o o f. In order to prove the theorem it is sufÏcient to show that successive approximations (2) are defined 

for all n = 0, 1, … and belong to B x t0, �� � as well as satisfy the inequalities (17) and (18). The other assertions 
of the theorem follow from lemmas 1 and 2.
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Since the inequality (18) is a direct consequence of the inequality (17), it is sufÏcient to prove the inequa-
lity (17). For n = 0 the inequality (17) is obvious:

x x f x f x g x a t t1 0 0

1

0 0 1 0� � �� ��� �� � � � � �� � � � �
�

.

We suppose that the inequality (17) holds for all n < k. Let us show that the operator �� �f xk  is invertible. 
In fact,

�� ��� �� �� � � �� �� � � �� � � �� � �
�

f x f x f x f x f xk k0

1

0 0

� � �� � � �� � � � �� �� �� �
� � � �x x x x x xk k k0 0 0 .

By the induction hypothesis,

x x x x t t tk

j

k

j j

j

k

j j k� � � � �� � �
�

�

�
�� �0

1

1

1

1

and hence � �� � � � �x x tk k0 0 (tk � � for all k = 0, 1, … as it was shown in lemma 1). Because of the con-
cavity and the monotonicity of ω, we have 

� � � �� �� � � �� � � � �� �� � �� �
x x x x x xk k k0 0 0

� � �� � � �� � � � � � � � � � � �� � � � � � � � �t t tk k k 0 1.

Thus, �� ��� �� �� � � �� �� � �
�

f x f x f xk0

1

0 1 and, consequently, the operator

T I f x f x f xk� � �� ��� �� �� � � �� �� ��
0

1

0

is invertible. Since �� � � �� � �f x f x T T
k 0 , the operator �� �f xk  is also invertible and

�� ��� �� � �
� �

�
� � � � �� ��� ��

� �f x T
T I t

k

k

1 1 1

1

1

1 � � � �
.

Using the estimate for rk from lemma 3 and the inequality (11), we get

x x f x f x g x
k k k k k�

�
� � �� ��� �� � � � � �� � �1

1

� �� ��� �� � � � � � � �� � �� � � � � � � ��
� � � �f x f x f x f x x x g x g x

k k k k k k k k

1
1 1 1 1�� � �

� �� ��� �� � � � � � � �� � �� � � �� ��� ��
�

� � �
�

f x f x f x f x x x f x g
k k k k k k k

1
1 1 1

1
xx g x
k k� � � � � ��1

�
� � � � � �

� � � � �� ��� ��
�

� � � � �� � � � ��r t t

t

a t tk k k

k

k k
� � � �1

1

1

� � � �

� � � ���� � � � �
� � � � �� ��� ��

� ��

� t

t
t t

k

k

k k
1

1� � � �
.

Consequently, the inequality (17) holds for n = k.
Since for all n = 0, 1, … the operator �� �f xn  is invertible and x x t tn n� � � �0 , the successive approxima-

tions (2) are defined for all n = 0, 1, … and belong to B x t0, .�� �  The convergence of the successive approximations 
to x∗ follows from the inequality (18). The theorem is proved.

Conclusions
In this paper the generalised Newton – Kantorovich method for solving non-linear operator equations with 

non-differentiable operators in Banach spaces was considered. The regular smoothness condition of the ope-
rator involved, which was proposed by A. Galperin and Z. Waksman, was replaced by a simpler one in which 
increments of the operator derivative are majorised by increments of a scalar function. The convergence theo-
rem was proved by means of majorant scalar equations.
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It should be noted that each Lipschitz smooth operator is also regularly smooth but the opposite is not true. 
So the theorem is applicable to more wide class of non-linear operator equations of the form (1) than the cor-
responding convergence theorems from articles [1; 3].
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