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BemmecTBeHHBII, KOMIUIEKCHBIH M GYHKIMOHAJILHBII aHAJIN3
Real, Complex and Functional Analysis

GENERALISED NEWTON - KANTOROVICH METHOD
UNDER THE MODIFIED REGULAR
SMOOTHNESS CONDITION

A. N. TANYHINA®

*Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract. The article deals with the generalised Newton — Kantorovich method for solving non-linear operator equa-
tions of the form f (x) +g (x) =0 in Banach spaces, where f'is the operator satisfying the regular smoothness condition;

g is the non-differentiable operator satisfying Lipschitz condition. The main convergence theorem is proved under the
modified regular smoothness condition in which increments of the operator f derivative are majorised by the increments
of a scalar function.

Keywords: generalised Newton — Kantorovich method; regular smoothness condition; non-linear operator equation.

Introduction
Let X'and Y be Banach spaces, f and g be non-linear operators defined on the closed ball B (xo, R) c X and

taking values in Y, where the operator f is differentiable at every interior point of B(xo, R) and the operator g
is non-differentiable. One of the most effective iterative methods for solving operator equations of the form

f(x)-i—g(x)zO (1)
is the generalised Newton — Kantorovich method with successive approximations
50=5, = [ (@) (1(x) g (x,))n=0.1 .. @

where x, is given.

A thorough convergence analysis of the sequence (2) was carried out in the work [ 1] by means of the approach
based on the application of majorant scalar equations and originating from L. V. Kantorovich’s investigations [2].
However, the hypotheses given there are difficult to verify and for this reason a more flexible approach for
solving the equation (1) was proposed in the research [3].

In the case when g = 0, the most precise error estimates for the process (2) were obtained by A. Galperin
and Z. Waksman in [4; 5]. These results were generalised in the article [6] under the assumption that the operator f
satisfies the regular smoothness condition introduced in the works [4; 5], and the operator g satisfies Lipschitz
condition from the paper [3]

||g(x") - g(x')” < \y(t)”x" - x'|| Vi, x"e B(xo, t), 3)

where  is non-decreasing function on [0, R]. However, the meaning of the regular smoothness concept from
the works [4; 5] is quite complex and it was shown in the research [7] that it may be replaced by a simpler
one in which increments of the derivative ' are majorised by increments of a scalar function. The aim of this
article is to prove the main convergence theorem for the process (2) under the modification of Galperin — Waks-
man condition from the paper [7].

Main concepts and preliminary results

Let ©:[0, 0) —[0, o) is a continuous strictly increasing concave function that vanishes at zero: (0)=0.
Assume without loss of generality that f"(x,)=1. Let

h()=int {[['(x)]: x € B(x, R}

In accordance with the article [5] the operator f is m-regularly smooth on B(xo, R) (or, equivalently, m is a re-
gular smoothness modulus of f on B(x,, R)), if there exists 4 e [0, h(f )} such that the inequality

mfl(hf(x’, x") + ||f'(x”) - f’(x')") - cofl(hf(x', x")) < ||x"— x'||, 4)

where

hf(x', x")= min{"f’(x')
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holds for all x', x" € B (xo, R). The operator f'is called regularly smooth on B (xo, R), if it is o-regularly smooth

on B(x,, R) for some ® with such properties.
It was shown in the paper [7] that the condition (4) may be replaced by a simpler condition

)= 7N < of (e r = r=21) =)= of G- = =) ) ©

}; A" =max {\, 0}. This condition is clearer than the condi-
tion (4). Moreover, in the work [5] this condition is used in the proof of some auxiliary statements and the main
theorem about the convergence of the classical Newton — Kantorovich method. If ¢ increases, then the value
of (x —-r— ||x”— x'||)+ also increases and the right part of the condition (5) decreases. Therefore, the higher is
the value of 7, the better is the estimate for || F'(x") =1 (x),

cessive approximations. In the paper [8] the comparative analysis of the regular smoothness and the Holder
continuity conditions for the equation (1) in the case, when g = 0, was carried out.
X € [0 0] l(1)]

where y =o' (1 - h); r=min{|| '

LetQ J(D d’t ‘I’ J.\V dr alsaposmvenumbersuchthata>||f X +g(x0)

is a constant. Let us define a functlon with numeric argument
W(t)=a-Q(x)+ Q(x—1)-t(1-o(x)) + ¥ (), (6)
and the numerical sequence {z, } as follows:
/4%
i)
1—[03 (x)—o(x-1, )]
where ¢, = 0.
Lemma 1. Let us suppose that the function (6) has a unique zero t, € [0 X] and

a<Q(x)—xo(x)+x—¥(x) @)

Then the sequence (7) is defined for all n, monotonically increases and converges to t,.

Proof. The function W is positive on [0, , ), since #, is a unique zero of the equation W (1) =0, W (0)=a >0
and W is continuous on [0, X]- Hence the function

u(r)=

=t n=0,1,..., (7

tn+

o 1-[o(x)-o(x-1)]
1s positive on [O, t, )
Let us show that the function # + u(t) is non-decreasing on [O, t, ) In fact,
(t + u(t))' =1+ u'(t) =1+ (1 - [Q(XI;V_(ZC)O(X_ t)]J -

W'(t)(l + oo(x— t) - co(x)) + W(t)co'(x— t) _
(1+0(x-1)- o))

‘I—"(t)(l + m(x— t) - m(x)) + W(t)oo'(x— t) 5
(1+ 0(z=1)~ o))’

on [0, #,). This implies that the sequence {z, } monotonically increases and

=1+

o=t +u(t,)<t,+u(t,)=t,

for ¢, < t,. Consequently, the sequence {tn} converges to ,, € [0, t*] and f,,=t,, + u( ) hence W( ) 0.
Since 7, is a unique zero of W in [0, x], it follows that 7,,=1,.

The sequence {tn} is defined for all n. In fact, it is clear from the condition (8) that W(x) <0<a= W(O) and
hence there exists 6 € (0, ) such that # (6) = 0. Consequently, 6 =7, = nlij;llo t andt <0<y foralln=0,1, ....

Because of the monotonicity of o, the inequality co(x - tn) >0istrue foralln=0,1, .... Lemma 1 is proved.
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Lemma 2. Let us suppose that there exists a constant y, € [0, o (1)] satisfying the condition (8), the ope-

rator f'satisfies the condition (5) on B ( Xo» R) with such y, the operator g satisfies the condition (3), and the func-

tion (6) has a unique zero t,< R in [O, x] Then the equation (1) has a unique solution in B(xo, t, )

Proof. Let us prove the existence of a solution in B(xo, t. ) We consider the sequence
u, . =Du,, n=0,1,...; u,=x,,

where D=1 — [f’(x0 )Tl(f+ g)=1—-(f+g), and the numerical sequence

Ppr1=d(p,), n=0,1,..;p,=0,
where d () =1+ W (t). Since

d'(t)=1+W'(t)=0(x)-o(x—1)+wv()=0

for all £ &[0, ], the function d is monotonically increasing on [0, ].

Forall n=0,1, ... the inequality
p, <1, Q)
holds. In fact, for n = 0 the inequality (9) is obvious: p,=0<t¢,. Let us suppose that the inequality (9) holds
for all n < k. Then from p, <1,, because of the monotonicity of d, we obtain d(p, )<d(z,), that is p, ,, <t,.
Consequently, by the induction hypothesis, the inequality (9) is true for all .
Let us prove by induction that the sequence {pn} is monotone. Clearly, 0 =p, < p, = a. We suppose that

Py <Pis1-Thenp,, =d(p,)<d ( O 41 ) =Py + - Thus, the sequence {p, } is monotonically increasing and boun-
ded from above. Consequently, it converges to some pe|0, 4, ]. If n > o0 in p, ,=p,+W(p,), we obtain
W(;S) =0and p=¢,.

Let us show that for all n = 0, 1, ... the inequality

u SPui1~ Py (10)

n+l " Uy

holds. For n = 0 the inequality (10) is obvious:
”“1 _“0” = on —(f(x0)+g(x0))—xou = ||f(xo)+g(xo)” <a= W(O) =P1~ Po-

We suppose that the inequality (10) holds for all n < k. Then
Up = U _(f(uk)_f(uk—l)) _(g(“k) _g(“k—l))uS
SHuk U1~ (f(“k) _f(uk—l))H + Hg(”k) ﬁé’(”kq)”S

-1 = | = D = D | =

1
<1177t ) = £ oo Wk = 0ot + [} (1) = 2 (e 1 )| <
0

< Ojl(co((x et = %))+l - x0||) - m((x e, = xo]) ))H“k —uy ||dt+ Hg(uk) - g(uk_l)H,

where u, =u, _, + t(uk —u, 71), 0 <t <1. By the induction hypothesis,

k k
et = 5o | = [l = o | < ZH%‘_ uj—lHS Z(pj— pj_1)=pk.
j=1 ]

Consequently, /=

||ut —x0||=H(l— t)(uk_1 - uo) + t(uk - uO)HS(l— t)Huk_1 —uOH + t||uk - u0||S(1— t)pk_1+ 1Py

From the condition (3) and the proposition 1 in article [3] it follows that

(") =g () < W (1 [x"= ) =¥ (1) V'€ B(x,. 1),

Because of the concavity of ® and the inequality (11), we have

xX"—x|<R-t (11)
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|
H”k 17 U H < I(w((X = |l - x0||)+ + o, - x0||) - (D((X = [l - x0||)+ ))Huk - ”k—ludt *
0
+ lP(Pk—l + H”k‘ uk—l”) _\P(Pk—l)S

sﬂmm—mu—M_%m@Vwbgm+w@”_T@hﬁg
j( ( ( 1-1)p, 1+tpk)))(pk—Pk_l)dt+‘P(pk)—\I’(pk_1):

Pk

= I (w(X)_m(X_e))de+\P(pk)_T(pkfl):d(pk)_d(pk—l):pkﬂ ~ P

Pr-1

Thus, the inequality (10) holds for n = £.
It follows from the inequality (10) that for m > n

||um—un||£“um—u H+...+ U, — U,

Spm_pm—l-I_"'_i_pn+l_pn:pm_pn‘

m—1
Hence for all m and n

”um_un”§|pm_ pn| (12)

Since the sequence {p, } converges to ¢, it follows from the inequality (12) that the sequence {u, } also con-

verges to some x,. Further
||un— u0||Spn <t,n=0,1,...,

and, consequently, all u#, with x, belong to B (xo, ) If n - oo in u, = Du,, we obtain that x, = D(x* ), or

f( ) + g( ): 0. Thus, x, is a solution of the equation (1) in B(xo, )

To prove the uniqueness of the solution x, in B (xo, ) let us consider the second solution x,, € B (xo, ) of
the equation (1) and show that for all n =0, 1, ... the inequality

x**—un”St*—pn (13)
holds. For n = 0 the inequality (13) is obvious:

x**—x0||$t*—p0:t*.

We suppose that inequality (13) holds for all #n < k. Then

Xpw — Duk” =

x**—ukn = x**_uk+f(uk)+g(uk)||:

=£ () = 1 () = (= %) + g (1) = g ()] <
S”f(”k) —f(x**) _f'(xo)(”k - x**)

+ e (%) — g )| <

< (1l ) - )

< floftc 15~ 15~ - oG-l s -

where @, = x,, + (4, — x,. ), 0 <7 <1. Further

dt+ g (x.) - g (),

||L7, — x0|| :”(1 — t)(x** — xo) + t(uk - X, )” < (1 — t) Xy — x0||+t||uk - x0|| < (1 — t)t* + 1p;..

Because of the concavity of w, the inequality (11) and the induction hypothesis, we have

10
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< Jl(w(X) - m(X ~ & - xo||))(’* —pi)dt + \P(Pk [ = 2 ||) =¥ (py)<

< j(co(x) —o(x— (1= 1)+ 10,)))(t.— py )t + W (1) =¥ (p, ) =

Ly

= [ (o)~ (1= 0))d0 +¥(t.) = ¥(p,)=d(t.) = d(p) =t.= prr

Hence the inequality (13) holds for n = k+ 1. If n — o in the inequality (13), we obtain that
||x** - x*” <t,—t,=0

and hence x,, = x,. Lemma 2 is proved.
Let us denote foralln=1, 2, ...

‘f(xl’l)_f(xnfl)_f,(xn—l)(xn_xnfl)“-

Lemma 3. Let us suppose that there exists a constant 'y € [O, o (1)] satisfying the condition (8), the operator f

v, =

satisfies the condition (5) on B (xo, R) with such y, the operator g satisfies the condition (3), the function (6)
has a unique zero t,e [O, X]: and the sequence {tn} is defined by the recurrence formula (7). If for all 1<k<n
successive approximations x, are defined and satisfy the inequality

ka—xk_luﬁtk—tk_l, (14)
then
r<a-Q(r)+ Q(x—1,) - t,(1- o(x)) + ¥(1,,)- (15)
Proof. Let xt:xn71+t(xn—xn71) 0<t<1.Then
|
’”nﬁ_[“f’(xr) f(xnfl) xn_xwl‘d’S
0
1
Sj(m((x—r—uxt—xnl ) + ‘xt—xnl‘)—m((x—r—uxt—xn1 ) )j xn—xnfl‘dt,
0
where r = xn_l—xOH.

Since for all 1 <k < n the inequality (14) holds, it follows that

n—1 n-1
Xn-1 _XOHS zuxk_xk—lug Z(tk_ tk—l)ztn—l
k=1 k=1

According to lemmall, ¢, <y foralln =0, 1, .... Hence

and

th—x xn_1+t(xn—xn_1)—xn_1‘=t

%, =%, | <t(t, =1, 1)

n-1

20—t —t(ty =1, )=t(x—1,)+ (1= 1)(x—1,1)>0

and, because of the concavity and the monotonicity of ®,

rnsjl(m(x—tnl)—m(x—tnl—t(tn—tnl)))(tn—tnl)dtz

0

X_F_H'xt_xnfl

=o(x=t, . )(t,~t1)= | "w(e)de=

11
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X—1t, X1

=o(x=t, 1 )(t,~t, 1)+ [ ©(0)d0- [ w(6)do=

0 0
:('O(X_tn—l)(tn_tn—l) + Q(X_tn)_ Q(X_tn—l)‘
Let us show that for all n =0, 1, ... the equality
(1=, by = 1,) = Qx—1,) + t (1= 0(x)) = ¥(1,)=a - Q(x) (16)
holds. In fact, by the definition of the sequence {tn}
(01—, ) (1= 0(x) + o(x—1,))=a = Qx) + Q(x—1,) = 1,(1- o(x)) + ¥ (1,)
and
(tn—tn_l)(l —o(yx) + w(x—tn_l))za— Q(x) + Q(X—tn_l) —t, (1= o(x)) +‘I’(tn_1).

It follows from the first of these equalities that

a-— Q(X):tn+1(1 - u)(x)) + m(x— tn)(tn+1 - tn) - Q(X— tn) - LP(tn)
and from the second that

a-— Q(x)ztn(l - co(x)) + (n(x— tn—l)(tn - tn—l) - Q(x— tn_l) —‘I’(tn_l).
Consequently,

(D(X_tn)(tn+1_tn) - Q(X_tn) + tn+1(1_ m(x)) _T(’n)z

Z(D(X_tn—l)(tn_tn—l) - Q(X_tn—1)+tn(1_ (1)) —‘P(tn_l)
foralln=1,2, ... and
w(x_tn)(tn+l_tn) - Q(X_tn) +tn+1(1_('0(X)) _T(tn):

=0t 1)(5— 1)~ Q1) + (1~ 0() - ¥ (1) =

=o(1)a=Q(x) + a(1-o(x))=a-Q(x).
Thus, the equality (16) holds for all n =0, 1, ... and the estimate for 7, may be rewritten in the form of the ine-
quality (15). Lemma 3 is proved.
Convergence theorem
Theorem. Let us suppose that there exists a constant y € [0, co_l(l)] satisfying the condition (8), the opera-
tor f satisfies the condition (5) on B(xo, R) with such y, the operator g satisfies the condition (3), and the func-

tion (6) has a unique zero t,< R in [O, X]- Then the following conditions are met:

1) the equation (1) has a unique solution x, in B(xo, z, )

2) the successive approximations (2) are defined for alln =0, 1, ... and belong to B(xo, t*) as well as con-
verge to x,;
3) foralln=0,1, ... the inequalities

X X

n+l1" *n

<t ., —t, (17)

x*—xn”St*—tn (18)
hold, where the sequence {tn} is defined by the recurrence formula (7), monotonically increases and converges to t,.
Proof. Inorder to prove the theorem it is sufficient to show that successive approximations (2) are defined

foralln=0,1, ... and belong to B(xo, t*) as well as satisfy the inequalities (17) and (18). The other assertions
of the theorem follow from lemmas 1 and 2.

12
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Since the inequality (18) is a direct consequence of the inequality (17), it is sufficient to prove the inequa-
lity (17). For n = 0 the inequality (17) is obvious:

b — x| = [f'(xo )]_l(f(xo) + g(xo))

We suppose that the inequality (17) holds for all n < k. Let us show that the operator f '(xk) is invertible.
In fact,
i -1 i i
o] (75 = (3)

<o (= b —xl) + s =l - o (e~ = wl))

By the induction hypothesis,

‘Saztl—to.

SCARAC E

k k
b=l < Xy =y < 2 (1=5-0) =
J= /=

and hence y — ||xk - x0|| 2y —t,>0(t, <y forallk=0,1, ... as it was shown in lemma 1). Because of the con-
cavity and the monotonicity of @, we have

o (= e = ol)"+ e = 30l = o (1= b= ) ) =
Sw(x—tk+tk)— u)(x—tk)<(n(x)— m(O)zw(x)Sl.

[0) ] (7 C0) = £(3%)

Thus,

‘< 1 and, consequently, the operator

' -1 ' ’
T=1+[f"(x)] (' ()= f"(x))
is invertible. Since f'(x; )= f"(x))T =T, the operator f"(x; ) is also invertible and

1

b e g wea

Using the estimate for 7, from lemma 3 and the inequality (11), we get
Jrer= s = LG0T (7 () + ) -
=L GOT (700 =7 () =G o) ) = ()
S EACAIN [ ESERIENREVECRREEEAN B FECAIN MENEFIENN E

_ +W (1) - (6 ) _a=9(x)+ Qx-4) — (1= o(x))+ ¥ (1)

_1—[m(x)—(o(x—tk)]_ 1—[m(x)—w(x—tk)] Tl Tl

Consequently, the inequality (17) holds for n = £.
Since for all n=0, 1, ... the operator f"(x, ) is invertible and ||xn - x0|| <t, <t,, the successive approxima-

<

tions (2) are defined for alln =0, 1, ... and belong to B (xo, t, ) The convergence of the successive approximations
to x, follows from the inequality (18). The theorem is proved.

Conclusions

In this paper the generalised Newton — Kantorovich method for solving non-linear operator equations with
non-differentiable operators in Banach spaces was considered. The regular smoothness condition of the ope-
rator involved, which was proposed by A. Galperin and Z. Waksman, was replaced by a simpler one in which
increments of the operator derivative are majorised by increments of a scalar function. The convergence theo-
rem was proved by means of majorant scalar equations.

13
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It should be noted that each Lipschitz smooth operator is also regularly smooth but the opposite is not true.
So the theorem is applicable to more wide class of non-linear operator equations of the form (1) than the cor-
responding convergence theorems from articles [1; 3].

References

1. 3abpeiixo I1I1, 3nenko I1I1. O6 0606mennu Metona Helotona — KanTopoBuua Ha ypaBHeHHs ¢ HeudhepeHIIIpyEeMBIMHI OTiepa-
TopaMu. Yxpaunckui mamemamuyeckuii sxcypuar. 1982;34(3):365-369.

2. Kantorovich LV, Akilov GP. Functional analysis in normed spaces. Moscow: Fizmatgiz; 1959. 684 p. Russian.

3. Zabrejko PP, Nguen DF. The majorant method in the theory of Newton — Kantorovich approximations and the Ptak error esti-
mates. Numerical Functional Analysis and Optimization. 1987;9(5-6):671-684. DOI: 10.1080/01630568708816254.

4. Galperin A, Waksman Z. Newton’s method under a weak smoothness assumption. Journal of Computational and Applied Ma-
thematics. 1991;35(1-3):207-215. DOI: 10.1016/0377-0427(91)90208-2.

5. Galperin A, Waksman Z. Regular smoothness and Newton’s method. Numerical Functional Analysis and Optimization. 1994;
15(7-8):813-858. DOI: 10.1080/01630569408816595.

6. Tanbruaa AH. O600mennbIit MeTox HetoToHa — KanTOpoBHUa [t ypaBHEHUH ¢ Hemu(PpepeHITUPYEMBIME OTepaTopami. /Jo-
Kknaovl Hayuonanvhoil akademuu nayk benapycu. 2011;55(6):17-22. EDN: YPSBZL.

7. 3abpetiro I1I1, Tansiruna AH. Mogudukauus ycnosust ['anenepuna — Bakcmana [uist peleHus HEMUHEHHbBIX ONepaTOPHBIX ypaB-
Henuid metoioM HerotoHa — KanTtoposuya. Joknadwr Hayuonanvrou akademuu nayk benapycu. 2013;57(6):8—12. EDN: WIQWOR.

8. Tanbiruna AH. CpaBHUTENBHBIN aHATTU3 yCIOBUI cXOOQUMOCTH MeTona Herotona — KantopoBmya 71t mprOIMKEHHOTO PeIeHUS
HEJIMHEHHBIX ONePaTopHbIX ypaBHeHUN. Becmuux Benopycckozo cocyoapemeennoco ynusepcumema. Cepusi 1, Qusuxa. Mamemamuxa.
Hngpopmamuxa. 2014;2:97-103.

Received 11.05.2025 / revised 15.11.2025 / accepted 15.11.2025.



