Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/325723
Заглавие документа: Efficient Content-based Image Retrieval Based on Anchor Point Selection in Manifold Ranking with Combined CNN and Low-Level Features
Авторы: Quy Hoang Van
Luong Vu Trong
Huy Ngo Hoang
Dzung Pham Thi Kim
Tuyet Dao Van
Ablameyko, S.
Xuan Pham Hong
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Дата публикации: 2023
Издатель: Minsk : Education and Upbringing
Библиографическое описание источника: Nonlinear Phenomena in Complex Systems. - 2023. - Vol. 26. - № 4. - P. 366-384
Аннотация: The paper describes the improvement of Content-Based Image Retrieval (CBIR) system efficiency. In CBIR, where each image is typically represented by low-level features (description of color, texture, and shape). It is proposed to solve the following two limitations: (1) not only exploiting the basic similarity measure of images, the paper proposed to use an improved Efficient Manifold Ranking (EMR), where the improved Fuzzy C-Means (FCM) clustering algorithm is used to determine the anchor points of the EMR Graph and (2) EMR has not yet taken advantage of both low- and high-level features of the image, it is the second limitation. To solve this limitation, the cf-EMR method is chosen to combine low-level features and CNN, in which the image is ranked with improved EMR to get the outstanding advantages of both features types, thereby improving the quality of access. So that the accuracy of image retrieval systems to be improved. The average accuracy of more than 85% of the tests, performed on the three image datasets Logo2K+, VGGFACE2-S and Corel30K, indicates the high efficiency of our recommendations in improving the performance of the CBIR system.
URI документа: https://elib.bsu.by/handle/123456789/325723
ISSN: 1561-4085
DOI документа: 10.5281/zenodo.10410163
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2023. Volume 26. Number 4

Полный текст документа:
Файл Описание РазмерФормат 
v26no4p366.pdf2,18 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.