Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/325723
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorQuy Hoang Van-
dc.contributor.authorLuong Vu Trong-
dc.contributor.authorHuy Ngo Hoang-
dc.contributor.authorDzung Pham Thi Kim-
dc.contributor.authorTuyet Dao Van-
dc.contributor.authorAblameyko, S.-
dc.contributor.authorXuan Pham Hong-
dc.date.accessioned2025-02-06T09:14:10Z-
dc.date.available2025-02-06T09:14:10Z-
dc.date.issued2023-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2023. - Vol. 26. - № 4. - P. 366-384ru
dc.identifier.issn1561-4085-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/325723-
dc.description.abstractThe paper describes the improvement of Content-Based Image Retrieval (CBIR) system efficiency. In CBIR, where each image is typically represented by low-level features (description of color, texture, and shape). It is proposed to solve the following two limitations: (1) not only exploiting the basic similarity measure of images, the paper proposed to use an improved Efficient Manifold Ranking (EMR), where the improved Fuzzy C-Means (FCM) clustering algorithm is used to determine the anchor points of the EMR Graph and (2) EMR has not yet taken advantage of both low- and high-level features of the image, it is the second limitation. To solve this limitation, the cf-EMR method is chosen to combine low-level features and CNN, in which the image is ranked with improved EMR to get the outstanding advantages of both features types, thereby improving the quality of access. So that the accuracy of image retrieval systems to be improved. The average accuracy of more than 85% of the tests, performed on the three image datasets Logo2K+, VGGFACE2-S and Corel30K, indicates the high efficiency of our recommendations in improving the performance of the CBIR system.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleEfficient Content-based Image Retrieval Based on Anchor Point Selection in Manifold Ranking with Combined CNN and Low-Level Featuresru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.5281/zenodo.10410163-
Располагается в коллекциях:2023. Volume 26. Number 4

Полный текст документа:
Файл Описание РазмерФормат 
v26no4p366.pdf2,18 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.