Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/323178
Title: | Novel ASEP-inspired solutions of the Yang-Baxter equation |
Authors: | Barik, Suvendu Garkun, Alexander S Gritsev, Vladimir |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 27-Aug-2024 |
Citation: | Barik S, Garkun AS, Gritsev V. Novel approach of exploring ASEP-like models through the Yang Baxter Equation. arXiv (Cornell University). 2024 Mar 5; |
Abstract: | We explore the algebraic structure of a particular ansatz of the Yang-Baxter equation (YBE), which is inspired by the Bethe Ansatz treatment of the asymmetric simple exclusion process spin-model. Various classes of Hamiltonian density arriving from the two types of R-matrices are found, which also appear as solutions of the constant YBE. We identify the idempotent and nilpotent categories of such constant R-matrices and perform a rank-1 numerical search for the lowest dimension. A summary of the final results reveals general non-Hermitian spin-1/2 chain models. |
URI: | https://elib.bsu.by/handle/123456789/323178 |
DOI: | 10.1088/1751-8121/ad6f81 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Кафедра теоретической физики и астрофизики (статьи) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Barik_2024_J._Phys._A__Math._Theor._57_375201.pdf | 542,34 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.