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Abstract
We explore the algebraic structure of a particular ansatz of the Yang-Baxter
equation (YBE), which is inspired by the Bethe Ansatz treatment of the asym-
metric simple exclusion process spin-model. Various classes of Hamiltonian
density arriving from the two types of R-matrices are found, which also appear
as solutions of the constant YBE. We identify the idempotent and nilpotent
categories of such constant R-matrices and perform a rank-1 numerical search
for the lowest dimension. A summary of the final results reveals general non-
Hermitian spin-1/2 chain models.

Keywords: Yang-Baxter integrability, non-Hermitian physics,
Exactly solvable systems

1. Introduction

In recent decades, significant advances have been made in our understanding of non-
equilibrium classical and quantum systems, particularly in one dimension. A large part of
this advance is based on the exact results related to integrability. These models are import-
ant in studies on integrable probability and interacting particle systems. One of the paradig-
matic classes of models in this area is the asymmetric simple exclusion process (ASEP).
It is an example of a solvable stochastic interface growth model, which gives rise to the
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Kardar–Parisi–Zhang equation [1–3]; see the surveys by [4]. Other integrable models with
similar properties include the stochastic six-vertex model. The particular case of open ASEP
is defined as the following: particles occupy sites in a finite chain {1, . . . ,N} for some N, and
jump to the left at rate q and to the right at rate p. Moreover, particles are inserted into site
1 at rate α and removed at rate γ, whereas at site N insertion occurs at rate δ and removal at
rate β. Any moves which violate the rule of one particle per site at a given time are excluded.
Such models have been used in various applications. The exactly solvable cases found in the
1990s [1] were generalised and extended further by many authors [5–9]. These models can
be mapped to non-Hermitian spin chains and often have hidden algebraic structures such as
Temperley-Lieb, Hecke [5], and q-deformed or more general quadratic algebras [6].

In this study, we extend the class of solvable ASEP models related to certain algebraic
structures (satisfying hecke relations) and their corresponding spin chains. In our previous
work [10], we focus on identifying non-regular Yang-Baxter equation (YBE) solutions. This
work however extends the search into certain regular solutions that correspond with constant
R-matrices. Some of these constant matrices are low-rank.

The structure of the paper is as follows—Starting from section 2, we derive the Hecke
algebra from the YBE with the R-matrix ansatz (2). Necessary relations for symbolic evalu-
ation of the solutions are identified. Section 3 details our computational workflow and results.
It includes discussions about the findings. In section 4, we showcase a generalised t-J type
Hubbard model satisfying the Hecke relations, which elucidates on the appearance of our res-
ults. Finally, we provide some discussions with [10] and draw the conclusions.

2. The R-matrix and an algebra

2.1. Yang Baxter equation

The focus in this paper is to study the YBE

R12 ( f(u1,u2))R13 ( f(u1,u3))R23 ( f(u2,u3))

=R23 ( f(u2,u3))R13 ( f(u1,u3))R12 ( f(u1,u2))
(1)

where we parameterise the rapidities using a general function f(x,y). To examine R-matrices
similar to those of the ASEP model, we consider the following R-matrix ansatz:

R( f(x,y)) = P (I+ f(x,y)M) (2)

whereM is a square matrix with complex coefficients, and P is the transposition operator. By
imposing limy→x f(x,y) = 0, R satisfies the regularity condition.

We construct the below transfer matrix of N lattice sites

τ (x,y) = TrA (R0,1 ( f(x,y))R0,2 ( f(x,y)) · · ·R0,N ( f(x,y))) (3)

where eachR0,n acts onA⊗Hn.Hn is theHilbert space for local site n.A is an auxiliary vector
space isomorphic to Hn. By considering the following ordering of limits (y→ x,x→ 0), we
calculate the first integral of motion:

2
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T= τ (0,0) = lim
x→0

lim
y→x

TrA
(
R( f(x,y))0,1 , . . . ,R( f(x,y))0,N

)
= TrA (P0,1, . . . ,P0,N)

= TrA (P1,0)P1,2, . . . ,P1,N

= P1,2, . . . ,P1,N

(4)

which is the translation operator that satisfies TN = I. It generates translations in the periodic
lattice. The first derivative with respect to x on τ reveals the second integral of motion:

H= lim
x→0

lim
y→x

N∑
k=1

Pk,k+1

(
d(Rk,k+1 ( f(x,y)))

dx

)
, (5)

which is the nearest-neighbouring Hamiltonian. By identifying df(x,y)/dx with a constant α
after taking the limits, the Hamiltonian simplifies as

H= α
N∑
k=1

Mk,k+1. (6)

A key observation is that M represents the Hamiltonian density. Expanding (1) by substitut-
ing (2), and with further simplifications gives the constraint onM

( f12 + f23 − f13)(M23 −M12)+ f12 f23
(
M2

23 −M2
12

)
+ f12 f13 f23 (M23M12M23 −M12M23M12) = 0

(7)

where fij ≡ f(ui,uj).

2.2. Algebra of the Hamiltonian density

Assuming that the parameterisation f(x,y) does not diverge as y→ x and satisfies
limy→x f(x,y) = 0, we consider taking all possible pairs of the spectral parameters u1,2,3 in (7).
The constraint disappears for u2 → u1 and u3 → u2. By taking u3 → u1, we find a nontrivial
condition which is(

M2
23 −M2

12

)
=

( f12 + f21)
f12 f21

(M12 −M23) . (8)

Since this expression must hold for every u1,2, we impose the following:

( f12 + f21)
f12 f21

= ω, ω ∈ C. (9)

Using (8) in (7) and rearranging the expression

(M23M12M23 −M12M23M12) =
( f12 + f23 − f13 −ωf12 f23)

f12 f13 f23
(M23 −M12) (10)

we find the second constraint that

1
f12 f13 f23

( f12 + f23 − f13 −ωf12 f23) = κ, κ ∈ C. (11)

3
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In this paper we will consider the following parameterisation

f(x,y) =
x− y∑N

i,j=0 dijx
iy j

, (12)

for arbitrary complex coefficients dij, which automatically satisfies limy→x f(x,y) = 0. By
using (9) and (11) we obtain

f(x,y) =
x− y

c20 + c0c1 (x+ y)+ c21xy+ωx+
(
c1
c0
ω− κ

c20

)
xy

(13)

where c0,c1 are free complex constants. The calculations leading to this expression are given
in appendix A.

We arrive at two constraints on M, which are(
M2

23 −M2
12

)
= ω (M12 −M23) ,

(M23M12M23 −M12M23M12) = κ(M12 −M23) .
(14)

2.2.1. Generalising the constraints on M. Extending (14) for arbitrary site indices (i, i+
1, i+ 2) from (1,2,3) correspondingly and using ei ≡Mi,i+1, we get

e2i +ωei = e2i+1 +ωei+1,

eiei+1ei+κei = ei+1eiei+1 +κei+1.
(15)

The Hamiltonian H becomes α
∑N

i=1 ei with α= c−2
0 . From the first constraint, we note that

e21 +ωe1 = e22 +ωe2 · · ·= e2N+ωeN (16)

which is satisfied if e2i +ωei = λI for some complex constant λ. Similarly, we impose

eiei+1ei+κei = ei+1eiei+1 +κei+1 ≡ ti,i+1 (17)

where we define ti,i+1 as a three site operator acting on Hi⊗Hi+1 ⊗Hi+2 which is invariant
under i ↔ i+ 1 exchange.

Finally the algebraic conditions that ei must satisfy, starting from (7), are:

e2i = λI−ωei,

eiei+1ei = ti,i+1 −κei,

ei+1eiei+1 = ti,i+1 −κei+1.

(18)

Up to appropriate identity shifts and multiplicative constants, (15) may be brought into stand-
ard Hecke Algebra. For different conditions on κ,λ and ti,i+1, the one above indicates various
hecke-algebraic structures that the generators need to fulfil.

4
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2.3. Exploring the algebraic conditions

We can gather important aspects of each condition from (15). The first condition

e2i +ωei−λI= 0 (19)

is also known as the eigenvalue problem. It can be expressed in the following factorised form

(ei− ν+I)(ei− ν−I) = 0, ν± =
1
2
(−ω± cω (λ)) , (20)

where we use cω(x)≡
√
ω2 + 4x as a shorthand. The second condition in (15) is the intertwin-

ing equation, which holds the important constraints arising from the YBE. By rewriting the
generator ei as qi+βI with β ∈ C, it is rewritten in the braid equation as

qiqi+1qi = qi+1qiqi+1, (21)

after fixing β such that β2 +βω−κ= 0. After selecting the positive branch of the quadratic
root, the eigenvalue problem (20) is modified for qi as follows:(

qi+
1
2
(cω (κ)+ cω (λ))I

)(
qi+

1
2
(cω (κ)− cω (λ))I

)
= 0. (22)

2.3.1. Solution classes. To identify the classes of (22), we consider the constraints on cω(κ)
and cω(λ). For the case where cω(κ) ̸= cω(λ), we arrive at

(q̃i+ I)(q̃i− θI) = 0, q̃i =
2qi

(cω (κ)− cω (λ))
, (23)

with

−θ =
cω (κ)+ cω (λ)
cω (κ)− cω (λ)

, (24)

which represents the familiar Iwahori-Hecke algebra [11, 12], with θ ̸= 0, while writing (21)
with some non-zero C

q̃iq̃i+1q̃i = q̃i+1q̃iq̃i+1, q̃i = Cqi. (25)

For the case of cω(κ) = cω(λ), with κ= λ ̸=−ω2/4 we obtain q̃2i = q̃i, q̃i =−qi/cω(λ),
which corresponds to the idempotent generators of the braid equation. Finally, for κ= λ=
−ω2/4, we have q̃2i = 0, q̃i = qi, which represent nilpotent generators of degree 2.

The rescaled braid equation in (25) is equivalent to the constant Yang-Baxter equation
(cYBE) where the constant R-matrix Qi,i+1 and q̃i are related by q̃i = Pi,i+1Qi,i+1. The
Hamiltonian then becomes

H=
α

C

N∑
i=1

q̃i+NαβI, α= c−2
0 , (26)

and the R-matrix (2) as

Rij ( f(x,y)) = (1+βf(x,y))Pij+
f(x,y)
C

Qij. (27)

5
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Table 1. Forms of possible Hamiltonian density. The R column refers the relations
which satisfies R= 0.

Type Case C β R

A κ ̸= λ 2(cω(κ)− cω(λ))−1 1
2 (−ω+ cω(κ)) (q̃i+ I)(q̃i− θI)

B κ= λ ̸=− 1
4ω

2 −cω(λ)−1 1
2 (−ω+ cω(λ)) q̃2− q̃

C κ= λ=− 1
4ω

2 1 − 1
2ω q̃2

A summary of different eigenvalue problems with corresponding forms of C and β is given in
table 1. In this manner, we have transformed the problem into a solution for q̃i satisfying (25)
with any one of the three eigenvalue problems depending on which constraints λ,κ and ω
fulfil.

2.3.2. Representation of the Hamiltonian density. We focus on (20), where ei is an N2 ×
N2 matrix for dim(A) = N and provide the necessary matrix representation. By identifying
p(x) = (x− ν+)(x− ν−) as the minimal polynomial of ei, we use the Primary Decomposition
Theorem [13] to obtain

ker(ei− ν+I)⊕ ker(ei− ν−I) = CN2

. (28)

After applying dim(A⊕B) = dim(A)+ dim(B) and rank-nullity theorem [13, 14], we find

Rk (ei− ν+I)+Rk (ei− ν−I) = N2, (29)

where Rk(M) is the rank of square matrixM. If we identify Λi = ei− ν+I as a rank r matrix,
then ei− ν−I= Λi+ cω(λ)I is a rank N2 − r matrix. Then, we rewrite (20) as

Λi (Λi+ cω (λ)I) = 0 (30)

to construct the matrix representation of ei = Λi+ ν+I. The essential property to note is that
for ω2 =−4λ, we have Λi as a nilpotent matrix of degree 2. For the case where ω2 ̸=−4λ,
we rewrite (30) with Φi =−cω(λ)−1Λi as Φ2

i =Φi which reveals the idempotent nature of Λi.
Thus, we require only nilpotent and idempotent matrices to construct two possible solutions
for ei.

2.3.3. General form of ei and intertwining relations. WithD= N2, we have the desired forms
of ei as below

ei =

{
Nr− ω

2 I ω2 =−4λ,

−cω (λ)Br+ ν+I ω2 ̸=−4λ,
(31)

where Nr and Br acting on Hi⊗Hi+1 are the (degree 2) Nilpotent and Idempotent matrices
of rank r, respectively. Using (17), we find the intertwining constraints that both of them must
satisfy:

Z⊗ I · I⊗Z ·Z⊗ I− I⊗Z ·Z⊗ I · I⊗Z= fλ,κ [I⊗Z−Z⊗ I] , (32)

6
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where

Z=

{
Nr fλ,κ = 1

4

(
ω2 + 4κ

)
,

Br fλ,κ = (κ−λ)
(
ω2 + 4λ

)−1
.

(33)

In the end we categorically write all possible forms of q̃i using table 1 as

q̃i =


Nr ω2 =−4λ=−4κ(BN) ,

Br ω2 ̸=−4λ=−4κ(BI) ,
2

cω(κ)Nr− I ω2 =−4λ ̸=−4κ(HN) ,
2cω(λ)

cω(λ)−cω(κ)Br− I ω2 ̸=−4λ ̸=−4κ(HI) ;

(34)

with which we use the braid equation (25) to solve for Nr and Br and identify the
Hamiltonian (26) and the R-matrix (27). Any solution of types BI and BN from (34) is a low-
rank matrix. For an idempotent matrix, the rank r is less than the dimension N. If r=N then
it corresponds to the identity matrix. For a nilpotent matrix (of degree 2), we have r⩽ N/2.
Hence, we have shown two classes of low-rank solutions of cYBE that are related physically
through (27). Solutions from classes HI and HN may not necessarily have r<N.

2.4. The three site operator

From (18), the three site operator ti,i+1 can be rewritten in the following symmetrised form
with respect to qi as

ti,i+1 = qiqi+1qi+β {qi,qi+1}+β2 (qi+ qi+1)+β
(
β2 +λ

)
I (35)

after setting the value of β which is considered in (22). Multiplication of the three-site operator
with qi− qi+1 simplifies to the following property:

ti,i+1 (qi− qi+1) = λ [qi,qi+1] (36)

and similarly

ti,i+1 (qi+ qi+1 + 2(β+ω)I) = λ(2κI+ {qi+βI, qi+1 +βI}) . (37)

2.4.1. Deducing the Temperley Lieb algebra. Now we can use the properties of the operator
to show that if ti,i+1 = 0, then λ= 0 for non-trivial qi. Let ti,i+1 = 0. If λ ̸= 0, then

[qi,qi+1] = 0, {ei,ei+1}=−2κI, ∀i. (38)

From the commutator condition, qi must be a single lattice site term. From the anti-
commutator relation, we write

qiqi+1 +β (qi+ qi+1)+
(
κ+β2

)
I= 0, ∀i (39)

which is only possible if each qi is proportional to identity I. Hence, for the non-trivial gener-
ator satisfying that the three site operator is zero, we need λ= 0.

Then, it follows that a non-trivial representation of ei satisfies the Temperley Lieb algebra
if ti,i+1 = 0 in (18). We have used it to simplify our numerical computations in the below
sections, where we focus on providing a list of lowest-dimensional solutions (N= 2) of the
R-matrix (2).

7
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3. Numerical analysis

We have computed relevant rank-1 idempotent and (degree 2) nilpotent square matrices of
dimension N2 = 4 for the possible forms of ei through the classification given in (34), which is
sufficient to reconstruct the R-matrix (27). The choice of working with rank-1 models lies in
avoiding set of equations that are difficult to tackle computationally. The numerical construc-
tion of these matrices is described in appendix B.

Another reason we chose to look into rank 1 solutions is thatAr in (B.1) represents the sum
of various rank-1 matrices that are linearly independent. When working with a rank r⩾ 1, it
involves 2N2r variables with r2 additional constraints either from (B.5) or (B.9). Onemay think
of rank-mmodels as an added generalisation to a rank-n case for n<m. Therefore, solving for
the lowest rank is a key step.

In this section, we describe the computational workflow involved in the analysis and meth-
ods to simplify the results.

3.1. Computational workflow

Our numerical methodology is divided into three phases.

3.1.1. Main computation. In the specific case ofN= 2, we can directly calculate the solutions
of (34) from the braid equation (25) with r= 1. Fortunately, the use of the Gröbner basis for
decomposing a maximal N6 + r2 = 65 overdeterministic equation for 2N2r= 8 unknowns is
tenable with Mathematica packages. Hence, for every solution pool (BI, BN, HI and HN), we
gathered results using the Solve[] and Reduce[] modules available in the package.

3.1.2. Removing redundant results. The next step is to remove redundant solutions from
the gathered results. Using the symmetries of the R-matrix mentioned in appendix C, we cre-
ated routines to identify repeating solutions. Pseudocodes of the routines used are provided in
appendix D.

For the proceeding step, we introduce the structure matrix

S(M) = [sij] , sij =

{
1 ifmij ̸= 0

0 ifmij = 0
(40)

to identify the non-zero elements of matrix M. Any solution whose structure matrix does not
have zero elements is called a full-case matrix.

We segment full-case solutions into various subcases with zero elements. For this purpose,
we made valid substitution of their free constant parameters with zero. All of them are then
combined with the rest of the results and repeated solutions are removed.

The symmetries of the R-matrix act equivalently on the Nilpotent/Idempotent matrices
owing to their form in (27). Hence, we can remove the repetitions within each solution category
in (34) while ensuring the distinction among them.

3.1.3. Post-simplifications. In the final step, we nullify the three-site operator in (35) for
every solution to simplify our results, which then fulfils the Temperley-Lieb algebra after writ-
ing them in the form of ei. External parameters, such as λ,ω,κ are reduced case-wise if they
do not contribute to the solution.

8
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3.2. Results of rank-1 models

Here, we present all rank-1 models with zero matrix terms. For simplicity, we also mention
the subcases of (18) that each result class fulfils. We name each class according to which of
the eigenvalue problems and intertwining relations they satisfy. Parameters c1,c2 and c3 are
free in these solutions.

3.2.1. Braid-Nilpotent. The solutions are of form ei = N1, satisfying

e2i = 0, eiei+1ei = 0, ei+1eiei+1 = 0. (41)

The list of these N1 is in (42).

MBN (a) =


0 −c2 0 −c22c

−1
1

0 0 0 0
0 c1 0 c2
0 0 0 0

 MBN (b) =


0 0 0 c3
0 0 0 c2
0 0 0 c1
0 0 0 0

 (42)

3.2.2. Braid-Idempotent. The solutions are of form ei = B1, satisfying

e2i = ei, eiei+1ei = 0, ei+1eiei+1 = 0. (43)

The list of these B1 is in (44).

MBI (a) =


0 0 0 0

−c2 1− c1 −c1 c1 (1− c1)c
−1
2

c2 −1+ c1 c1 c1 (c1 − 1)c−1
2

0 0 0 0



MBI (b) =


0 c2 0 −c22 (c1 + 1)−1

0 1 0 −c2 (c1 + 1)−1

0 c1 0 −c1c2 (c1 + 1)−1

0 0 0 0

MBI (c) =


0 0 c2c

−1
1 c2

0 0 0 0
0 0 1 c1
0 0 0 0



MBI (d) =


0 0 −c2 c2c

−1
1

0 0 −(c1c2 + 1) (c1c2 + 1)c−1
1

0 0 −c1c2 c2
0 0 −c1 (c1c2 + 1) c1c2 + 1

 .

(44)

There is a model of form ei = B1

MBI (e) =


0 0 0 c21
0 0 0 c1
0 0 0 c1
0 0 0 1

 (45)

which satisfies e2i = ei, eiei+1ei = ei+1eiei+1 ̸= 0.

9
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3.2.3. Hecke-Nilpotent. The solutions are of form ei = N1, satisfying

e2i = 0, eiei+1ei =−κei, ei+1eiei+1 =−κei+1. (46)

The list of these N1 is in (47).

MHN (a) =


0 0 0 0

−c2 −c1 −c1
(
κ− c21

)
c−1
2

c2 c1 c1
(
−κ+ c21

)
c−1
2

0 0 0 0



MHN (b) =


0
(
c2κ1/2

)
c−1
1 c2

(
qκc22

)
c−1
1

0 κ1/2 c1 c2qκ
0 −κc−1

1 −κ1/2 −
(
κ1/2qκc2

)
c−1
1

0 0 0 0



MHN (c) =


−2c1 2c21c2

(
κ− c21

)−1
2c21c2

(
κ− c21

)−1
2c1c22

(
κ− c21

)−1(
c21 −κ

)
c−1
2 c1 c1 c2(

c21 −κ
)
c−1
2 c1 c1 c2

0 0 0 0


(47)

where qκ =
(
c1 +κ1/2

)(
κ1/2 − c1

)−1
.

3.2.4. Hecke-Idempotent. We found two types of solutions for this type. The first type is of
form ei = B1, satisfying

e2i = ei, eiei+1ei =
1
4
ei, ei+1eiei+1 =

1
4
ei+1. (48)

The list of these B1 is in (49)

MHIa (a) =


0 0 0 0

(1− 2c2)
2
(4c1)

−1 c2 c2 − 1 c1
−(1− 2c2)

2
(4c1)

−1 −c2 1− c2 −c1
0 0 0 0



MHIa (b) =
1
2


1 0 −c1 c2

c1c
−1
2 0 −c21c

−1
2 c1

0 0 0 0
c−1
2 0 −c1c−1

2 1



MHIa (c) =
1

2(c1 − c2)


c1 + c2 0 −4 4(c1 + c2)

−1

c1 (c1 + c2) 0 −4c1 4c1 (c1 + c2)
−1

c2 (c1 + c2) 0 −4c2 4c2 (c1 + c2)
−1

1
4 (c1 + c2)

3 0 −(c1 + c2)
2 c1 + c2

 .

(49)

The second type is of form ei = B1, satisfying

e2i = ei, eiei+1ei =−κei, ei+1eiei+1 =−κei+1. (50)

10
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The list of these B1 is in (51)

MHIb (a) =


0 0 0 0

−
(
κ− c22 + c2

)
c−1
1 c2 c2 − 1 c1(

κ− c22 + c2
)
c−1
1 −c2 1− c2 −c1

0 0 0 0



MHIb (b) =
1
2


0 c1 (1− γ) c1 (1− γ) −c21 (1− γ)

2

0 (1− γ) (1− γ) −c1 (1− γ)
2

0 (1+ γ) (1+ γ) 4c1κ
0 0 0 0



MHIb (c) =
1
2


0 0 0 0
0 (1− γ) (1− γ)

2
(1+ γ)

−1 0
0 (1+ γ)

2
(1− γ)

−1
(γ+ 1) 0

0 0 0 0



(51)

where γ =
√
4κ+ 1 .

3.3. Extensions of known models

In this section, we examine asymmetric spin-hopping models from our numerical results. They
are grouped together according to the similarities in their nearest neighbouring dynamics. We
decompose each two-site ei in terms of SU(2) spin matrices Sqi = σqi /2. For brevity, we use the
notation in (52).

S±i,xy = Sxi ± iSyi

S±i,xz = Sxi ± iSzi

Pi,i+1 =
1
2

(
I+σxi σ

x
i+1 +σyi σ

y
i+1 +σziσ

z
i+1

)
.

(52)

We reiterate that our results are derived from the general treatment of the solutions of the
YBE. One may consider mapping them into spinless fermions to interpret them as Markov
processes, and is not solely limited by it. For instance, they may present themselves after
vectorising the Lindblad equation [15]. Hence, our results are given as non-Hermitian spin
chains for a broader consideration.

3.3.1. The asymmetric hopping models. MBI(a) from (44),MHIa(a) from (49), andMHIb(c)
from (51) have dynamics similar to MHIb(a) from (51), which we write as follows

Mi,i+1 =−Ki,i+1 (c2)+Qi,i+1

Ki,i+1 (c2) = c2S
−
i,xyS

+
i+1,xy+(1− c2)S

+
i,xyS

−
i+1,xy+ SziS

z
i+1 +

(
c2 −

1
2

)(
Szi+1 − Szi

)
− 1

4

Qi,i+1 = SziA
−
i+1 −A−

i S
z
i+1 +

1
2

(
A+
i −A+

i+1

)
A±
i = c1S

+
i,xy±

(
κ+ c2 (1− c2)

c1

)
S−i,xy (53)

11
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where Ki,i+1 resembles a spin-ASEP model. In addition, Qi,i+1 appears in the model and is
additional in various subparts. To understand this extra term, we simplify the model by sub-
stituting c1 = (c2(c2 − 1)−κ)1/2. Then,

Qi,i+1 =
(√

c2(c2 − 1)−κ
)[ 1

2i
(S+i,xzS

−
i+1,xz− S−i,xzS

+
i+1,xz)+ i(Syi − Syi+1))

]
(54)

which represents an XZ-aligned spin-chain with a hermiticity-breaking subterm. With κ=
c2(c2 − 1), the extra term vanishes andwe recover the ASEPmodel. In this manner, we identify
extensions of previously studied models.

Another extension is provided by the models of MBN(a) from (42), MHN(b),MHN(c)
from (47) and MHIb(b) from (51). We write MHIb(b) as follows

Mi,i+1 =Ki,i+1

(
1+ γ

2

)
+Qi,i+1

Qi,i+1 =−c21
(1− γ)

2

2
S+xy,iS

+
xy,i+1 −

1
4
c1γ (1− γ)

(
S+xy,i+1 − S+xy,i

)
− 2SziS

z
i+1

− 1
2
c1 (γ− 1)(γ+ 2)SziS

+
xy,i+1 +

1
2
c1 (γ− 1)(γ− 2)S+xy,iS

z
i+1 +

1
2
.

(55)

The additional term represents the dynamics of the spin-creation operations. Imposing c1 = 0
recovers the model.

Finally, we conclude that there are similar extensions to the TASEP (Totally ASEP)
model, where spin hopping is allowed in one direction in the periodic chain. These are the
MBI(b),MBI(d) from (44), MHIa(b),MHIa(c) from (49).

3.3.2. Anti-Hermitian model. We find a model MHN(a) from (47) which extends an anti-
Hermitian spin chain. MHN(a) is written as follows

Mi,i+1 =
[
c1S

−
i,xyS

+
i+1,xy− c1S

+
i,xyS

−
i+1,xy+ c1

(
Szi+1 − Szi

)]
+Qi,i+1

Qi,i+1 = SziA
−
i+1 −A−

i S
z
i+1 +

1
2

(
A+
i −A+

i+1

)
A±
i =

((
κ− c21
c2

)
S+i,xy± c2S

−
i,xy

)
.

(56)

For relevant parameter substitutions, we can rewrite Qi,i+1 in (56), similar to that in (54).
Both systems can be further combined into the following rank-1 model

ei =−p
4
+

2q− p
2

(
Szi − Szi+1

)
+
(
qS+i,xyS

−
i+1,xy+(p− q)S−i,xyS

+
i+1,xy

)
+ pSziS

z
i+12s

(
SziS

x
i+1 − Sxi S

z
i+1

)
+ is

(
Syi − Syi+1

) (57)

satisfying the below TL algebra,

eiei+1ei =
(
s2 − q(q− p)

)
ei

ei+1eiei+1 =
(
s2 − q(q− p)

)
ei+1

e2i =−pei

(58)

which is also a solution of YBE with the R-matrix given by (2).

12
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Table 2. Some rank-2 Hecke-Idempotent models.

Model ei ω λ

B1
− s
2
+
(
(p+ s)Szi + pSzi+1

)
+ qS−i,xyS

−
i+1,xy

+
(
pS+i,xyS

−
i+1,xy+(p+ s)S−i,xyS

+
i+1,xy

) s p(p+ s)

B2 −
(
Syi+1 + Syi

)
+ rS−i,xzS

−
i+1,xz+

(
S−i,xzS

+
i+1,xz+ S+i,xzS

−
i+1,xz

)
0 1

B3 k
(
Szi + Szi+1

)
+
(
k2S+i,xyS

−
i+1,xy+ S−i,xyS

+
i+1,xy

)
0 k2

3.3.3. Spin-creation models. Finally, we have MBN(b) from (42) and MBI(c),MBI(e)
from (44), which represents the model with sole spin-creation operations. For example, we
write MBI(c) as follows:

Mi,i+1 = c2S
+
i,xyS

+
i+1,xy− SziS

z
i+1 +

1
2

(
Szi+1 − Szi

)
+

1
4
+Qi,i+1

Qi,i+1 =
c2
c1
S+i,xyS

z
i+1 − c1S

z
iS

+
i+1,xy+

1
2

(
c2
c1
S+i,xy+ c1S

+
i+1,xy

)
.

(59)

This completes the summary of all rank-1 models obtained through our numerical analysis.
We note that the free parameters in our models are not reduced further by similarity transform-
ations. Such reductions might reveal models that we already know are integrable. Thus, we do
not claim to have found any new models. Nevertheless the problem of identifying higher-rank
models is yet to be investigated.

3.4. Higher rank models

For completeness, we also present some of the models ei constructed using the nilpotent and
idempotent matrices of rank r> 1 which we could identify from our numerical analysis. For
brevity, λ,κ and ω are expressed with respect to the model parameters.

3.4.1. Some rank 2 cases. We have some Hecke-Idempotent models in table 2 where ei =
−cω(λ)B2 + ν+I. They all satisfy the below subcase of (18)

eiei+1ei = ei+1eiei+1 ̸= 0,

e2i = λ−ωei.
(60)

It is interesting to note that model B1 becomes a Hecke-Nilpotent model of rank 2 when
s=−2p.

3.4.2. A rank 3 case. In the end, we provide one model of the form ei =−cω(λ)B3 + ν+I
which follows the algebra below

eiei+1ei = ti,i+1 −κei,

ei+1eiei+1 = ti,i+1 −κei+1,

e2i = λ;

(61)

13
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and is given as follows

ei =−rPi,i+1 + 2
√
p− r2

(
SziS

x
i+1 − Sxi S

z
i+1

)
+ i
√
p− r2

(
Syi+1 − Syi

)
,

ti,i+1 =
(
pr− 2r3

)
− r2 (ei+ ei+1)− r{ei,ei+1} ,

κ= r2 − p,

λ= r2.

(62)

This model is also discussed within the setting of [2] and is presented in our classification as
follows: a rank-3 HI model when p ̸= 0, a rank-3 BI model when p= 0 and a rank-1 HNmodel
when r= 0. The case where p= r2 represents the well-known Heisenberg XXX model.

3.5. As stochastic operators

In order to consider the Hamiltonian densities ei as stochastic operatorsM= [mi,j], they need to
satisfy these criteria: (i)mi,j ∈ R, (ii)

∑
imi,c = 0 for all c, (iii)mi,i ⩾ 0 for all i, and (iv)mi,j ⩽ 0

for all i ̸= j. The sign of the elements ofM can be interchanged by an overall multiplication of
−1.

If we considerM to be a rank-1matrix of dimension 4, pertaining to the discussions before,
it leads in restricted choices. Notably, there is no validM of form N1. Turning toM satisfying
the form B1, we have

Ms,1 (a) =


· · · α
· · · β
· · · γ
· · · 1

 Ms,1 (b) =


· · α ·
· · β ·
· · 1 ·
· · γ ·

 Ms,1 (c) =


· · · ·
· 1− p −p ·
· p− 1 p ·
· · · ·



Ms,1 (d) =


· · · ·
· · · ·
· · 1− p −p
· · p− 1 p

 Ms,1 (e) =


1− p · · −p
· · · ·
· · · ·

p− 1 · · p


(63)

where α+β+ γ =−1 and 0⩽ p⩽ 1. Ms,1(c) is the familiar ASEP model. Ms,1(a) also sat-
isfies the integrable conditions for {α= 1, β,γ =−1} as it becomes MBI(e) with c1 =−1.
Ms,1(e) for p= 1/2 also overlaps with MHIa(b) with {c1 = 0,c2 =−1}.

The question of higher-rank stochastic operators additionally satisfying Yang-Baxter integ-
rability is an open problem.

4. Hubbard-type representation of (degenerate) Hecke algebraic models

In this section we are interested to bring note of a (degenerate) Hecke algebraic model within
the representation of Hubbard X-operators which illuminates on the appearance of non-trivial
spin-chain models from our numerical analysis.

First we introduce the Hubbard operators as

Xαβ
i = (|α⟩⟨β|)i , Xαβ

i Xλγ
i = δβλXαγ

i∑
α

Xαα
i = 1,

[
Xαβ
i ,Xδγ

j

]
±
=
(
δβδXαγ

i ± δαγXβγ
i

)
δij,

(64)

14
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where [A,B]± = AB− (−1)p(A)p(B)BA denotes a graded commutator, and p(A) is the fermionic
parity of operator A. We consider a particular choice of basis for the operators

|0⟩= |↑↓⟩ , |1⟩= |↓⟩ , |2⟩= |↑⟩ , |3⟩= |◦⟩ , (65)

where states |0⟩ and |3⟩ are bosonic whereas states |1⟩ and |2⟩ are fermionic. With the Greek
indices running through integers 0 to 3, a particular representation of the X-operators is given
by

[
Xαβ
i

]
=


n↓n↑ n↓c

†
↑ −c†↓n↑ c†↑c

†
↓

n↓c↑ n↓(1− n↑) c†↓c↑ c†↓(1− n↑)

−c↓n↑ c†↑c↓ (1− n↓)n↑ c†↑(1− n↓
c↓c↑ c↓(1− n↑) c↑(1− n↓) (1− n↑)(1− n↓)

 . (66)

Next by using the bond notation Oi,i+1 ≡ Oi, we introduce the following set of operators

a†i = X30
i X

30
i+1 −X10

i X
20
i+1 +X20

i X
10
i+1,

ai = X03
i X

03
i+1 +X01

i X
02
i+1 −X02

i X
01
i+1,

(67a)

bi =
∑
a

(−1)p(a)X0a
i X

a0
i+1, b†i =

∑
a

Xa0i X
0a
i+1, (67b)

p0i =
(
1−X00

i

)(
1−X00

i+1

)
, p1i = X00

i

(
1−X00

i+1

)
,

p2i =
(
1−X00

i

)
X00
i+1, p

3
i = X00

i X
00
i+1,

(67c)

Bi =
∑
a,b

(−1)p(b)Xabi X
ba
i+1, ri = a†i ai, (67d)

where the Latin indices run from integers 1 to 3. These operators satisfy the following quasi-
local algebra [16]

riri+1ri = rip
0
i+1, ri+1riri+1 = p0i ri+1, (68a)

BiBi+1Bi = Bi+1BiBi+1, (68b)

b†i ri+1bi = bi+1rib
†
i+1, b†i Bi+1bi = bi+1Bib

†
i+1, (68c)

bibi+1a
†
i = a†i+1p

3
i , biai+1a

†
i = p1i b

†
i+1, (68d)

biai+1ri = b†i+1ai, biai+1Bi = b†i+1aiBi+1, (68e)

bibi+1Bi = Bi+1bibi+1, (68f )

b†i a
†
i+1 = bi+1a

†
i (68g)

among other relations. For a single bond, we have b†i bi = p2i , bib
†
i = p1i , B

2
1 = p0i and all oper-

ators commute for |i− j|> 1. One particular baxterization of this algebra is provided by the
operator

ei =−
[
bi+ b†i +

(
α+

1
α

)(
p0i + p3i

)
+αp1i +

1
α
p2i −

(
α+

1
α

)]
, (69)
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which satisfies the following Hecke algebra relations (18)

eiei+1ei− ei = ei+1eiei+1 − ei+1,

eiej = ejei, |i− j|> 1,

e2i =

(
α+

1
α

)
ei.

(70)

In the limit of α=−1/α the relations are reduced to the Temperley-Lieb algebra. For the
limit of α= 1, one can write the generator hi = 1− qi, where qi = bi+ b†i + p0i + p3i further
satisfies the braid equation (21).

These algebraic structures correspond to a variation of an integrable t− J-type models

H=−
∑
i,σ

(
ni,σ̄c

†
i,σci+1,σni,σ̄ + ni+1,σ̄c

†
i+1,σci,σni,σ̄

+ η+i η
−
i+1 + η+i+1η

−
i +Vni,↑ni,↓ni+1,↑ni+1,↓ +Uni,↑ni,↓

) (71)

with arbitrary V and U. Here η+i = c†i,↑c
†
i,↓, η

−
i = ci,↓ci,↑ are generators of the pairing su(2)

algebra [
η+i ,η

−
i

]
= 2ηzi ,

[
ηzi ,η

±
i

]
= 2ηzi , 2ηzi = ni,↑ + ni,↓ − 1. (72)

Furthermore, the Hamiltonian (71) commutes with the generators of the supersymmetric
su(2|1) algebra. In practice, all of our models in section 3.3 may be written into fermionic
operations through a pseudospin representation, and we can tie our spin-chain models as a
manifestation of integrable variations of the Hubbard model.

5. Discussions and conclusion

We have identified certain forms of the constant solutions to the YBE (given in (34) upto a left
multiplication of Pi,i+1) which also solves the main relation in (2) via the R-matrix (27). In
particular, many of them are low-rank matrices which are often overlooked. In our previous
work [10], we devised an algorithm for identifying non-trivial solutions to the YBE of the
difference form and enlisted many novel results.

To elucidate the relationship with this work, the algorithm is applicable for identifying
those constant solutions. Hence we extend the scope of finding non-trivial models solely by
studying the cYBE3 (constant YBE), which is a much easier task than dealing with spectral-
dependent relations. Additionally, we further draw attention to the parameterisation (13) which
has correspondences with the one employed in [17].

To conclude, motivated by earlier studies on exactly solvable exclusion processes, we
present a number of (possibly) new solutions of the YBE related to low-rank matrices and
degenerate versions of Hecke-related algebraic structures. We also wrote spin-1/2 versions
of the corresponding exclusion processes and demonstrated their connection to the integrable
hubbard-type models. In future, we plan to examine their critical and dynamical properties.

3 It is equation (25) after substituting q̃i →Pi,i+1Qi,i+1.
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Appendix A. Calculation towards finding f(x,y)

We first note the constraints on the function fij ≡ f(ui,uj)

lim
y→x

fx,y = 0

( f12 + f21)
f12 f21

= ω

1
f12 f13 f23

( f12 + f23 − f13 −ωf12 f23) = κ

(A.1)

where f ij is the following ansatz

f(x,y) =
x− y
S(x,y)

, S(x,y) =
N∑

i,j=0

dijx
iy j. (A.2)

It immediately satisfies limy→x f(x,y) = 0. Substituting the ansatz to the second constraint
reveals

N∑
i,j=0,i̸=j

(dij− dji)x
iy j = ω (x− y) (A.3)

which resolves by identifying

d10 = d01 +ω

dij = dji, i ̸= j, (i, j) ̸∈ {(1,0) ,(0,1)}
(A.4)

Expanding the third constraint becomes tedious if all the variables u1,2,3 are considered. Hence
we consider u2 = 0 and expand it as follows

f(u1,0)+ f(0,u3)− f(u1,u3)−ωf(u1,0) f(0,u3)

−κf(u1,0) f(u1,u3) f(0,u3) = 0
(A.5)
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which after substituting the form of f(x,y), becomes

S(u1,u3)(u1S(0,u3)− u3S(u1,0)+ωu1u3)

−(u1 − u3)(S(u1,0)S(0,u3)+κu1u3) = 0
(A.6)

A.1. Expansions

The numerator terms of (A.6) are expanded term-wise as follows

u1S(0,u3)S(u1,u3) = u1

(
N∑
i=0

d0,iu
i
3

) N∑
j,k=0

dj,ku
j
1u

k
3


=

N∑
i,j,k=0

d0,idj,ku
j+1
1 ui+k3

=
N∑
j=0

2N∑
n=0

(
0⩽i,k⩽N∑
n=i+k

d0,idj,ku
n
3

)
uj+1
1

=
N∑
i=0

2N∑
j=0

0⩽α,β⩽N∑
j=α+β

d0,αdi,β

uj3u
i+1
1

(A.7)

u3S(u1,0)S(u1,u3) = u3

(
N∑
i=0

di,0u
i
1

) N∑
j,k=0

dj,ku
j
1u

k
3


=

N∑
i,j,k=0

di,0dj,ku
i+j
1 uk+1

3

=
N∑
k=0

2N∑
n=0

0⩽i,j⩽N∑
n=i+j

di,0dj,ku
n
1

uk+1
3

=
N∑
j=0

2N∑
i=0

0⩽α,β⩽N∑
i=α+β

dα,0dβ,j

ui1u
j+1
3

(A.8)

ωu1u3S(u1,u3) = ω
N∑

i,j=0

di,ju
i+1
1 u j+1

3 (A.9)

(u1 − u3)S(u1,0)S(0,u3) = (u1 − u3)
N∑

i,j=0

(
di,0d0,ju

i
1u

j
3

)

=
N∑

i,j=0

di,0d0,j
(
ui+1
1 uj3 − ui1u

j+1
3

) (A.10)

κu1u3 (u1 − u3) = κ
(
u21u3 − u1u

2
3

)
(A.11)
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A.2. Cases

We now consider the pre-factors of each monomial terms of the numerator of (A.6) and equate
it to zero.

(i) ui1u
j+1
3 , i⩾ N+ 2, 0⩽ j⩽ N :

0⩽α,β⩽N∑
i=α+β

(−dα,0dβ,j) = 0 (A.12)

We start by taking i = 2N, the maximal power possible in this case and find dN,0dN,j =
0. By setting dN,0 = 0 for all values of j, we can proceed with i = 2N− 1 and impose
dN−1,0 = 0 similarly. In this way, we put di,0 = 0, 2⩽ i ⩽ N.

(ii) ui+1
1 uj3, j⩾ N+ 2, 0⩽ i⩽ N :

0⩽α,β⩽N∑
j=α+β

d0,αdi,β = 0. (A.13)

We impose di,j = dj,i for all i ̸= j except for (i, j) ∈ {(1,0),(0,1)} to use the previous
remark and keep it zero.

(iii) uN+1
1 uN+1

3 :

(d0,1dN,N− d1,0dN,N+ωdN,N) = 0 (A.14)

which is satisfied by the earlier result that d1,0 = d0,1 +ω.
(iv) uN+1

1 uj3, 1⩽ j⩽ N :

0⩽α,β⩽N∑
j=α+β

(d0,αdN,β)−
0⩽α,β⩽N∑
N+1=α+β

(dα,0dβ,j−1)− dN,0d0,j+ωdN,j−1

= d0,0dN,j+ d0,1dN,j−1 − d1,0dN,j−1 +ωdN,j−1

= d0,0dN,j = 0

(A.15)

If d0,0 = 0, then f(u,u) is indeterminate. It is null for dN,j = 0 for all j.
For the uN+1

1 term, the prefactor is d0,0dN,0 − dN,0d0,0 = 0.
For ui1u

N+1
3 , 1⩽ i⩽ N,

0⩽α,β⩽N∑
N+1=α+β

(d0,αdi−1,β)−
0⩽α,β⩽N∑
i=α+β

(dα,0dβ,N)+ di,0d0,N+ωdN,j−1

= d0,1di−1,N− d0,0di,N− d1,0di−1,N+ωdN,j−1

=−d0,0di,N = 0

(A.16)

For uN+1
3 , the prefactor is −d0,0d0,N+ d0,0d0,N = 0.
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(v) up1u
q
3, 2⩽ p,q⩽ N :

0⩽α,β⩽N∑
p=α+β

(d0,αdp−1,β)−
0⩽α,β⩽N∑
q=α+β

(dα,0dβ,q−1)− (dp−1,0d0,q− dp,0d0,q−1)+ωdp−1,q−1

= d0,0 (dp−1,q− dp,q−1)+ dp−1,q−1 (d0,1 +ω− d1,0)

= d0,0 (dp−1,q− dp,q−1) = 0
(A.17)

which is satisfied by putting dp−1,q = dp,q−1.
(vi) u1u

q
3, 3⩽ q⩽ N :

0⩽α,β⩽N∑
q=α+β

(d0,αd0,β)−
0⩽α,β⩽N∑
1=α+β

(dα,0dβ,q−1)− (d0,0d0,q− d1,0d0,q−1)+ωd0,q−1

= d0,0 (d0,q− d1,q−1)+ d0,q−1 (d0,1 +ω− d1,0)

=−d0,0 (d1,q−1) = 0

(A.18)

which is satisfied by putting d1,q−1 = 0 for all q= 3, . . . ,N.
Similarly for up1u3, 3⩽ p⩽ N, the prefactor is

0⩽α,β⩽N∑
1=α+β

(d0,αdp−1,β)−
0⩽α,β⩽N∑
p=α+β

(dα,0dβ,0)− (dp−1,0d0,1 − dp,0d0,0)+ωdp−1,0

= d0,0 (dp−1,1 − dp,0)+ dp−1,0 (d0,1 +ω− d1,0)

= d0,0dp−1,1 = 0

(A.19)

(vii) u21u3 :

0⩽α,β⩽N∑
1=α+β

(d0,αd1,β)−
0⩽α,β⩽N∑
2=α+β

(dα,0dβ,0)− (d1,0d0,1 − d2,0d0,0)+ωd1,0 +κ

= d0,0 (d1,1 − d2,0)+ d1,0 (d0,1 +ω− d1,0)− d1,0d0,1 +κ

= d0,0d1,1 − d1,0d0,1 +κ= 0.

(A.20)

Similarly for u1u23, the prefactor is

0⩽α,β⩽N∑
2=α+β

d0,αd0,β −
0⩽α,β⩽N∑
1=α+β

dα,0dβ,1 − (d0,0d0,2 − d1,0d0,1)+ωd0,1 −κ

= d0,0 (d0,2 − d1,1)+ d0,1 (d0,1 +ω− d1,0)+ d1,0d0,1 −κ

=−(d0,0d1,1 − d1,0d0,1 +κ) = 0.

(A.21)

For both cases, it requires

d1,1 =
d1,0d0,1 −κ

d0,0
(A.22)
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(vii) u1u3 :

0⩽α,β⩽N∑
1=α+β

(d0,αd0,β)−
0⩽α,β⩽N∑
1=α+β

(dα,0dβ,0)− (d0,0d0,1 − d1,0d0,0)+ωd0,0

= d0,0 (d0,1 − d1,0)+ d0,0 (d0,1 +ω− d1,0)− d0,0 (d0,1 − d1,0)

= 0.

(A.23)

For up1, 1⩽ p⩽ N, the prefactor is d0,0dp−1,0 − dp−1,0d0,0 = 0.
For uq3, 1⩽ q⩽ N, the prefactor is −d0,0d0,q−1 + d0,0d0,q−1 = 0.

Consolidating the conditions obtained for nullifying each sub-terms, we have

1. d1,0 = d0,1 +ω
2. d1,1 = (d1,0d0,1 −κ)/d0,0
3. di,0 = d0,i = 0, 2⩽ i ⩽ N
4. dj,N = dN,j = 0, 1⩽ j ⩽ N
5. d1,p = dp,1 = 0, 2⩽ p⩽ N− 1
6. dp−1,q = dp,q−1, 2⩽ p,q⩽ N.

We use condition 4, 5 and 6 in the list to show that, except for d0,0,d1,1,d0,1 and d1,0, all the
values of di,j are 0. We demonstrate this using dp−1,q = dp,q−1 as follows:

0= dj,N = dj+1,N−1 = dj+2,N−2 = · · ·= dN,j, 1⩽ j⩽ N

0= d1,j = d2,j−1 = d3,j−2 = · · ·= dj,1, 2⩽ j⩽ N− 1
(A.24)

We represent (A.24) diagrammatically by representing di,j as (i, j), and indicate the nulli-
fication as follows (for N= 4 as an example):
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The green points represents the coefficients which are non-zero.
The ansatz (A.2) then becomes

f(x,y) =
x− y

d0,0 + d0,1 (x+ y)+ωx+ d1,1xy
, d1,1 =

(d0,1 +ω)d0,1 −κ

d0,0
(A.25)

and also satisfies

f(u1,u2)+ f(u2,u3)− f(u1,u3)−ωf(u1,u2) f(u2,u3)

−κf(u1,u2) f(u1,u3) f(u2,u3) = 0.
(A.26)

With the given form of f(x,y), we substitute d0,0 = c20 and d0,1 = c0c1 to rewrite it as

f(x,y) =
x− y

c20 + c0c1 (x+ y)+ c21xy+ωx+
(
c1
c0
ω− κ

c20

)
xy

. (A.27)

Appendix B. Idempotent and degree-2 Nilpotent matrices of rank r

A rank r square matrix of dimension D is

Ar =
r∑

i=1

CiX
T
i (B.1)

where {Ci| 1⩽ i⩽ r} and {Xi| 1⩽ i ⩽ r} are sets of D-dimensional linearly independent
column vectors.

To construct an idempotent matrix Br of rank r, we require its Jordan canonical form to be
a diagonal matrix, with r entries of 1 and 0 for the remaining entries. Hence, it is expressed in
the below form

Br =Q diag

1, . . . ,1︸ ︷︷ ︸
r

,0, . . . ,0

 Q−1 (B.2)

where Q is any general invertible D×D matrix. By using

Ei =

(
0, . . . , 1︸︷︷︸

i

,0, . . . ,0

)T

(B.3)

where 1 is in the i-th position of the column vector Ei, Br is written as

Br =
r∑

i=1

QEiETi Q
−1 =

r∑
i=1

CiX
T
i (B.4)
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with Ci =QEi and XTi = ETi Q
−1. Then we need

XTi Cj = δij (B.5)

for any Ar to be idempotent.
Similarly, to construct a Nilpotent matrix Nr of rank r of degree 2, that is, N2

r = 0, we
identify the following Jordan normal form (upto similarity):

Q−1NrQ=



S1 0 . . . 0 . . . 0
0 S2 . . . 0 . . . 0
...

...
. . .

... . . . 0
0 0 . . . Sr . . . 0

0 0 . . . 0
. . . 0

0 0 . . . 0 . . . 0


(B.6)

where

Si =

[
0 1
0 0

]
(B.7)

and the remaining diagonal blocks are null. Note that the rank of the nilpotent matrix satisfies
2r⩽ D. Writing Jordan matrix in terms of Ei, we have

Nr =
r∑

i=1

QE2i−1E
T
2iQ

−1 =
r∑

i=1

CiX
T
i (B.8)

with Ci =QE2i−1 and XTi = ET2iQ
−1. Then we have

XTi Cj = 0, ∀i, j (B.9)

for any Ar to be a nilpotent matrix of degree 2.

Appendix C. Symmetries of the R-matrix

TheYBE is also an over-determined system of atmost cubic polynomials for solving thematrix
elements of R( f(u,v)), which resides in A⊗A. We define an algebra homomorphism ϕij :
A⊗A→A⊗A⊗A where

ϕ12 (x⊗ y) = a⊗ b⊗ 1

ϕ23 (x⊗ y) = 1⊗ a⊗ b

ϕ13 (x⊗ y) = a⊗ 1⊗ b

(C.1)

such that Rij = ϕij(R). In this manner (1) is constructed.
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By considering A≡ C2, the R-matrix becomes a 4× 4 matrix. Subsequently, using (1),
we construct a maximal set of 64 equations with a total unknown of 16 variables. Using the
notation followed in [18] for the YBE equations of an N2 ×N2 R-matrix (N= dim(A)) :∑

RklijEjl⊗Eik, Eij = [(δaiδbj)] , a,b ∈
{
1,2, . . . ,N2

}
, (C.2)

which we call the Hietarinta notation, the YBE is written in the index notation

Rk1k2
j1j2 (u1,u2)Rl1k3

k1j3
(u1,u3)Rl2l3

k2k3
(u2,u3) =Rk2k3

j2j3 (u2,u3)Rk1l3
j1k3

(u1,u3)Rl1l2
k1k2

(u1,u2) (C.3)

where the repeated indices imply summation. By using the above notation, the following sym-
metries of the R-matrix are revealed:

(i) Rkl
ij →Rij

kl [Transposition]

(ii) Rkl
ij →R(k+n)modN, (l+n)modN

(i+n)modN, ( j+n)modN [Index incremention]

(iii) Rkl
ij →Rlk

ji [Inversions]

along with the local basis transformation and multiplicity freedom of the R-matrix

R→ g(K⊗K)R(K⊗K)−1 (C.4)

for some non-singular K ∈ A and complex function g. These invariances allow for identifica-
tion of the repeated solutions.

Appendix D. Pseudocodes towards removing repeated CYBE solutions

D.1. Algorithm workflow

To remove repeatingR-matrix solutions, we utilise their symmetries.We refer to Transposition,
Inversions and Index incrementions as point transformations and employ similarity transform-
ations separately. The following workflow demonstrates this algorithm.

D.1.1. Filter A workflow. We consider all the matrix results Rl that have some zero ele-
ments and generate equivalence class caseunion[i]≡ [i] based on point transformations.
Correspondingly, we construct subcase graph subgraphs[i]≡ g[i] for every [i].

24



J. Phys. A: Math. Theor. 57 (2024) 375201 S Barik et al

Figure D1. Examples of subcase graphs found in our numerical analysis. The solution
index 2,8 and any of 1,2,3,4 are considered from the [i]s represented from left figure
respectively.

The subcase graph is defined as g[i] = {a→ bif ais transformable from b ∀ a,b ∈ [i]}. To
checkwhether b should be brought into a, we first transform bothmatrices closer to a triangular
matrix via point transformations using algorithm 6. Then, we solve for the re-substitution of
parameters in b towards a using algorithm 4.

The pseudocode (algorithm 2) is the main routine for generating classifier objects.
Algorithm 3 produces all possible permutations of matrices invariant under transposition,
inversions and index incrementions.

For every corresponding [i]we use the generated g[i] to manually choose results that are not
subcases of other solutions. Some of the generated g[i]s are shown in figure D1. In general, we
circumvent the highly parameterised results from our computation to consider simpler results
for the similarity transformations.

The union U of all the selected results from every [i] is then used to generate the following
subcase graph gs= {b→ aif f(a,b, t)∀a,b ∈ U}, where f(a,b, t)≡IsSimilar[a,b,t] from
algorithm 5. The parameter t is used to limit the computation time (in seconds). We manually
remove the subcases and finalise the list of solutions.

D.1.2. Filter B workflow. All full-case matrices Rf have a structure matrix that has no zero
elements. These correspond to heavily coupled models untenable for our study. Hence, divide
them into many non-full matrices to identify new results for further simplification.

First, we generate a subcase graph g[i] = {a→ bif ais transformable from b ∀ a,b ∈ Rf}.
Results that are not subcases of other solutions are considered. Then, we use algorithm 1 to
break them into valid matrix solutions with zero elements and finalise the list.

D.1.3. Collection+ filter A workflow. From the Filter A and Filter B workflows, all results are
collated and run through the Filter A again which then provides a set of unique solutions.
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D.2. Pseudocodes for the algorithm/routines used

Algorithm 1. Full model simplification routine.

Description: Breaks list of full-matrix results into non-full matrix results
Input: List of matrices M
Output: List of non-full matrices Ml
Require: Each matrix from M are square matrices

1 procedure FullCaseSimplify(Ml)
2 Local Ml←{}
3 foreach m ∈Ml do
4 Local vars← all variables of m
5 Local varsubs← Variable replacement of vars to unique ci
6 m← m after applying varsubs
7 Local temp←{m with ci = 0∀ci}
8 temp← temp after removing Indeterminate cases
9 Ml← Ml∪ temp

10 Return Ml

Algorithm 2. Non-full model classifier.

Description: Classifies all the non-full matrix results
Input: List of matrix results Rl
Output: List caseunion, List subgraphs
Require: Elements N of Rl are square matrices and S(N) has some zero elements

1 procedure (FullCaseSimplify(Rl))
2 Local struct←{S(x) ∀ x ∈ Rl} (after removing duplicates)
3 Local matrsolgraph[i]←{x ∈ Rl s.t S(x) = S(y)} where y is ith element of struct
4 Local grpcases←{1,2, . . . ,Length(struct)}/∼ where i∼ j if S(i)
∈ RmatrixInvariances(S(j),20)

5 Local caseunion[i]←
∪
j∈[i] matrsolgraph[j] ∀ [i] ∈ grpcases

6 forall the caseunion[i]≡ x do
7 x←{TriFormat(i,120), i ∈ x}
8 Local subgraphs[i]← {If IsTransformable(xn,xm,120) then m→ n,∀1⩽ n,m⩽#x}
9 subgraphs[i]← subgraphs[i] with all cliques identified

10 caseunion← {caseunion[i], 1⩽ i ⩽ Length(grpcases)}
11 subgraphs← {subgraphs[i], 1⩽ i ⩽ Length(grpcases)}
12 Return caseunion, subgraphs
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Algorithm 3. Routine for making a table of R-matrices invariant under their symmetries.

Description: Produce a set of matrices invariant to R-matrix symmetries (except for similarity
transformation

Input: Matrix R, Integer N
Output: List RMatrices
Require: N> 0, R is a square matrix

1 procedure RMatrixInvariances(R, N)
2 Local RMatrices←{R}
3 Local NewCases←{}
4 for i = 1, i < N+ 1, i++ do
5 NewCases← {}
6 NewCases← NewCases ∪ (RMatrices after transposition)
7 NewCases← NewCases ∪ (RMatrices after index incremention)
8 NewCases← NewCases ∪ (RMatrices after inversion)
9 NewCases← DeleteDuplicates(NewCases)

10 foreach m ∈ NewCases do
11 if m /∈ RMatrices then
12 RMatrices← RMatrices ∪{m}
13 RMatrices← DeleteDuplicates(RMatrices)
14 Return RMatrices

Algorithm 4. Routine to check if one R-matrix is transformed into another.

Description: Checks if constant matrix M1 be transformed to M2 by variable substitution
Input: Matrix M1,M2, Integer t (time, seconds)
Output: Boolean isvalid
Require: M1,M2 are of same dimensions

1 procedure IsTransformable(M1,M2, t)
2 Local isvalid← False
3 Local vars1← all variables from M1

4 Local vars2← all variables from M2

5 Local varssubs[1]← Variable replacement of vars1to unique ai
6 Local varssubs[2]← Variable replacement of vars2to unique bi
7 if Length(vars1)<Length(vars2) then
8 Returnisvalid← False
9 Local solset← (M1−M2) after applying varsubs[1], varsubs[2]

10 Local varset← {all ai}
11 Local sols← TimeConstrained(Solve(solset = 0,varset),t,{})
12 foreach s ∈ sols do
13 if M1 =M2 after applying varsubs[1], varsubs[2] and s then
14 Local isvalid← True

15 Return isvalid
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Algorithm 5. Routine to check if one R-matrix is similar to another.

Description: Checks if constant matrix M1 is similar to M2 upto variable substitution
Input: Matrix M1,M2, Integer t (time, seconds)
Output: Boolean isvalid
Require: M1,M2 are of dimension 4× 4

1 procedure (IsSimilar(M1, M2, t))
2 Local isvalid← False

3 Local Q=

(
q1 q2
q3 q4

)
⊗
(

q1 q2
q3 q4

)
4 Local vars1← all variables from M1

5 Local vars2← all variables from M2

6 Local varssubs[1]← Variable replacement of vars1 to unique ai
7 Local varssubs[2]← Variable replacement of vars2 to unique bi
8 if Length(vars1)+4<Length(vars2) then
9 Return isvalid← False

10 Local solset← (Q ·M1 ·Q−1−M2) after applying varsubs[1],varsubs[2]
11 Local varset←{all aiand q1,q2,q3,q4}
12 Local sols← TimeConstrained(Solve(solset = 0,varset),t,{})
13 foreach s ∈ sols do
14 if Q.M1.Q

−1 =M2 after applying varsubs[1], varsubs[2] and s then
15 Local isvalid← True

16 Return isvalid

Algorithm 6. Routine to transform R-matrix closer to a triangular matrix.

Description: Transform the matrix into an upper-triangular matrix structure upto
R-matrix symmetries

Input: Matrix M1, Integer N
Output: Matrix M
Require: M1 is a square matrix

1 procedure Triformat(M1, N)
2 Local d← Dimension of M1

3 Local rlist← RMatrixInvariances(M1,N)
4 Local weight←{Triweight(x) ∀ x ∈ rlist}
5 Local weight←{x[1] + 2d ∗ (Sum(x[2] + x[3])) ∀ x ∈ weight}
6 Local index← Position of highest value in weight
7 Local mout← rlist[index]
8 Return mout
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Algorithm 7. Helper function to Triformat routine.

Description: Assign a weight to a matrix to indicate its proximity to an upper triangular matrix.
Input: Matrix M1

Output: Number n
Require: M1 is a square matrix

1 procedure (Triweight(M1))
2 Local d← Dimension of M1

3 Local w1← Sum of upper triangular elements of S(M1)+1
Sum of lower triangular elements of S(M1)+1

4 mask(s) = [(1+ s)d+ s+(−1)sj− | i− j |]ij , 1⩽ i, j ⩽ d
5 Local w2← table of sum of every upper diagonal terms of Mask(1) ◦ S(M1)
6 Local w3← table of sum of every lower diagonal terms of Mask(0) ◦ S(M1)
7 Local n←{w1,w2,w3}
8 Return n
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