Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/323012
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLuo, T.-
dc.contributor.authorGao, W.-
dc.contributor.authorBelotserkovsky, A.-
dc.contributor.authorNedzved, A.-
dc.contributor.authorDeng, W.-
dc.contributor.authorYe, Q.-
dc.contributor.authorFu, L.-
dc.contributor.authorChen, Q.-
dc.contributor.authorMa, W.-
dc.contributor.authorXu, S.-
dc.date.accessioned2024-12-12T14:05:01Z-
dc.date.available2024-12-12T14:05:01Z-
dc.date.issued2024-
dc.identifier.citationInternational Journal of Applied Earth Observation and Geoinformation Volume 2024;131: 103923ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/323012-
dc.description.abstractIndividual tree detection and counting in unmanned aerial vehicle (UAV) imagery constitute a vital and practical research field. Vegetation remote sensing captures large-scale trees characterized by complex textures, significant growth variations, and high species similarity within the vegetation, which presents significant challenges for annotation and detection. Existing methods based on bounding boxes have struggled to convey semantics information about tree crowns. This paper proposes a novel deep learning network called VrsNet based on the density map information. The proposed work pioneers the segmentation and counting application by utilizing the semantic information of Gaussian contour. Besides, we sample and create the UAV vegetation remote sensing density dataset TreeFsc for experiments. In quantitative comparison across multiple datasets, the proposed method demonstrates high performance, with a 3.45 increase in MAE and a 4.75 increase in RMSE. Experiments demonstrate superior cross-region, cross-scale, and cross-species target detection capabilities of the proposed approach compared with the existing object detection methods. Our code and dataset are available at: https://github.com/luotiger123/VrsNet/tree/main/VrsNet.ru
dc.description.sponsorshipThis research is supported in part by the Fundamental Research Funds for the Central Nonprofit Research Institution of CAF ( CAFYBB2022ZB002 ), and in party by National Natural Science Foundation of China (NO. 32371877 ) This research is supported in part by the Fundamental Research Funds for the Central Nonprofit Research Institution of CAF (CAFYBB2022ZB002), and in party by National Natural Science Foundation of China (NO. 62102184, NO. 32371877)ru
dc.language.isoenru
dc.publisherElsevier B.V.ru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.subjectЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Автоматика. Вычислительная техникаru
dc.titleVrsNet - density map prediction network for individual tree detection and counting from UAV imagesru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1016/j.jag.2024.103923-
dc.identifier.scopus85194764382-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
1-s2.0-S1569843224002772-main.pdf11,31 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.