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A B S T R A C T

Individual tree detection and counting in unmanned aerial vehicle (UAV) imagery constitute a vital and
practical research field. Vegetation remote sensing captures large-scale trees characterized by complex textures,
significant growth variations, and high species similarity within the vegetation, which presents significant
challenges for annotation and detection. Existing methods based on bounding boxes have struggled to convey
semantics information about tree crowns. This paper proposes a novel deep learning network called VrsNet
based on the density map information. The proposed work pioneers the segmentation and counting application
by utilizing the semantic information of Gaussian contour. Besides, we sample and create the UAV vegetation
remote sensing density dataset TreeFsc for experiments. In quantitative comparison across multiple datasets, the
proposed method demonstrates high performance, with a 3.45 increase in MAE and a 4.75 increase in RMSE.
Experiments demonstrate superior cross-region, cross-scale, and cross-species target detection capabilities of the
proposed approach compared with the existing object detection methods. Our code and dataset are available
at: https://github.com/luotiger123/VrsNet/tree/main/VrsNet.
1. Introduction

In recent years, the vegetation remote sensing images have ex-
panded into various fields, including grouping (Liu et al., 2012), seg-
mentation (Cheng et al., 2023; Zhao et al., 2024; Nasiri et al., 2023),
individual tree research (Jiang et al., 2023; Hui et al., 2022; Zheng
et al., 2023), and visual analysis (Zang et al., 2024). In individual tree
detection, high similarity and inter-species heterogeneity present chal-
lenges for existing neural network models to extract vegetation textural
features. Traditional bounding-box-based detection methods require
tedious annotation of individual tree regions, resulting in significant
errors and a substantial workload. Conversely, current density-based
detection methods struggle to capture the contour information of veg-
etation. Therefore, this study proposes a novel semi-supervised deep
learning model for estimating the density distribution.
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Vegetation sampled by drones presents three challenges compared
with indoor images (Tolan et al., 2024): Firstly, drones are sensitive
to changes in spatial scales. This sensitivity leads to more diverse
spatial characteristics. Secondly, vegetation exhibits high inter-species
heterogeneity. This demands that the model extracts various textures
and crown diameters. Lastly, vegetation grows in various environments,
which requires the model to possess cross-regional recognition capa-
bilities. To address the above issues, we introduce the novel Mapping
and Correlation module (MAC) for correlated feature extraction. Addi-
tionally, we propose a Multi-layer Coordinate Attention (MLCA) as an
intrinsic attention mechanism. This mechanism enhances our model’s
capability for cross-region recognition. Finally, we propose an Adap-
tion (Ap) module for lightweight parameter fine-tuning during testing.
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Fig. 1. Study areas.
These architectures enable the network to achieve better predictions of
density distribution maps.

Our experiments regions have distinct geomorphic features as
shown in Fig. 1. Firstly, we conduct experiments in artificial planting
forests located in Jiaozuo, China (34◦53′60′′𝑁, 113◦09′00′′𝐸). The area
boasts diverse topography, abundant mountainous resources, and a hu-
mid, warm climate. The area is populated with catalpa trees in different
2

stages of growth. The challenging terrain hampers the utilization of
vegetation resources. Secondly, we select Xuanwu Lake Natural Forest
Park in Nanjing, China, as our study site (32◦03′53′′𝑁, 118◦49′03′′𝐸).
The area is populated with many common deciduous trees such as
cedar, cypress, camphor, and chestnut. The diverse vegetation not only
holds significant research value but also presents challenges to the
model’s compatibility. Our dataset TreeFsc is constructed based on
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two research areas. Fig. 1. fully illustrates the diversity of our dataset,
which is the first density dataset designed for individual-tree extraction
research. Our model does not rely on sampling distance and ensures a
spatial resolution of approximately 30 centimeters.

Our contributions can be summarized as follows:

• we pioneer a two-step individual tree segmentation and count-
ing method, applying density map prediction to individual tree
detection research.

• we propose a novel semi-supervised network that focuses on the
extraction of correlated features, which is more suitable for the
detection and complex vegetation research.

• we open-source a new drone remote sensing vegetation dataset
TreeFsc, and provide density annotations, facilitating research mi-
gration. Experiments demonstrate that our model predicts more
accurate density distribution maps for various objects, facilitat-
ing object detection and counting studies compared with other
state-of-the-art methods.

2. Related work

2.1. Bounding-box-based object detection methods

Traditional bounding-box-based object detection methods integrate
convolutional neural networks into detection. For instance, R-CNN (Gir-
shick et al., 2014) summarizes the detection in 3 steps: first, generating
candidate regions using Selective Search; then, extracting convolu-
tional features for each region; finally, performing object detection
using classifiers and regressors. However, processing a large number
of candidate regions resulted in slow network speed. Later, Faster
R-CNN, as proposed by Ren et al. (2015), addressed this limitation
by introducing the Region Proposal Network (RPN), which generates
candidate regions, resulting in an accurate and efficient end-to-end
network. Subsequently, He et al. (2017) enhanced Faster R-CNN by
introducing a segmentation head, resulting in Mask R-CNN. This en-
dows Mask R-CNN with the capability of instance segmentation. Then,
the YOLO series proposed by Redmon et al. (2016) introduces a one-
stage detection approach, transforming the object detection task into a
regression problem. However, we find that methods based on bounding
boxes are not suitable for vegetation detection. Vegetation displays high
scale variations, intensive scenes and complex texture features, which
poses challenges for bounding box models.

2.2. Density-based object detection methods

Recently, scholars have increasingly focused on the localization and
counting of density distribution maps, achieving notable progress in ar-
eas such as crowds (Liu et al., 2019; Boominathan et al., 2016; Li et al.,
2018; Zhang et al., 2016; Ranasinghe et al., 2023), vehicles (Mundhenk
et al., 2016; Guo et al., 2022), cells (Jayarao et al., 2004), pests (Zhang
et al., 2024), and multi-class counting (Ranjan et al., 2021; Xu et al.,
2021a).

The density map represents the probability distribution of vegeta-
tion presence at each pixel. The values range between 0 and 1, with
those closer to 1 indicating a higher likelihood of vegetation presence.
The density generation process is inspired by the method proposed
by Zhang et al. (2016). This approach ensures a uniform gradient
nature of the density distribution image. This characteristic allows our
density map to provide improved estimations of individual trees.

In the early stages of CNN-based density counting networks, a com-
mon design choice is to utilize a single-branch structure. For example,
Crowd CNN (Wang et al., 2015), focused on generating crowd density
maps to achieve counting results. Due to the presence of multi-scale
variations in real-world images, Boominathan et al. (2016) introduces
the multi-branch structure CrowdNet, which combines deep and shal-
low sub-network structures to perceive the uneven scale variations
3

of crowd density. Inspired by multi-branch neural networks, Zhang
et al. (2016) proposed the multi-column convolutional neural network
MCNN, which uses columns with different-sized convolutional kernels
to extract feature information. However, due to the excessive parame-
ters in the multi-column convolution, Khoo and Ying (2019) introduces
the SwitchNet, which predicts the density level of the image itself
through a classifier for density regression.

Subsequently, researchers are no longer satisfied with the high
redundancy of multi-column network architectures. For example, Li
et al. (2018) introduces the dilated convolution network CsrNet. The
application of dilated convolution maintains resolution while expand-
ing the advantages of the receptive field, thereby preserving more
image details. Liu et al. (2019) proposes the Context Aware Network
CAN, which reflects the scale information of objects. Then, Ranjan et al.
(2021) proposes a few-shot density counting method FamNet. Although
this structure takes local features into account, it does not involve
attentional filtering of regions. The reason is that those methods focus
on fusing global features with local features without considering their
implicit connections.

2.3. Individual-tree segmentation methods

Individual-tree crown segmentation is widely used in combination
with point cloud semantic segmentation (Xu et al., 2018, 2023, 2021b).
Its core workflow involves associating pixel values with semantic infor-
mation in the point cloud. Forest remote sensing monitoring requires
geometric structural information based on trees, which cannot be di-
rectly obtained from a single frame or unit. With the development
of deep learning, more and more scholars are adopting deep neural
networks to process individual-tree crown remote sensing information
and achieve high-quality results (Pu et al., 2022). However, scholars
lack precedents for applying density maps to vegetation detection, and
the existing vegetation segmentation methods require precise pixel-
level annotations, resulting in huge workloads, which will be addressed
in our work.

3. The proposed method

Our workflow is depicted in Fig. 2. Next, we introduce the density
map generation algorithm in detail. We present the general framework
of the VrsNet model from a holistic perspective as shown in Fig. 3.
Subsequently, we focus on introducing the key modules: the Mapping
and Correlation module (MAC), the Multi-layer Coordinate Attention
(MLCA), and the Adaption module (Ap). Additionally, we elaborate
on the employed loss functions in this approach and we analyze the
algorithm’s parameters and complexity comprehensively.

3.1. Our work

Our work can be summarized into two processes: network predic-
tion and downstream applications as shown in Fig. 2.

Firstly, we obtain the individual tree density detection map through
the proposed VrsNet. The network process is illustrated within the
blue dashed box. The original input image is predicted through various
network modules to obtain a preliminary density map denoted as Pred.
By comparing with the Ground Truth in the Ap module, the regression
module parameters are adjusted, yielding a more accurate density map.
We conduct two different downstream tasks based on the obtained
density map as shown in the red dashed box. To fully leverage the
Gaussian semantic information implied in the vegetation density map.
The first branch is tree crown segmentation application: by applying
hierarchical filtering to the density map, a vegetation density contour
map can be derived. Then, by controlling threshold parameters, mask
images of different intensities can be generated and can be used for
vegetation contour segmentation applications. The second branch is
the large-scale high-density spatial vegetation counting application:
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Fig. 2. The proposed work. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The network architecture.
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the probability density map contains information about vegetation
distribution. By integrating and summing, the number of vegetation
trees can be estimated. These achievements will be further discussed
in the following sections.

3.2. Density map generation algorithm

According to Zhang et al. (2016), we initially generate a full-zero
matrix of the same size as the original image and mark the positions 𝑥𝑖
corresponding to the centers of targets. This process can be described
as follows:

(𝑥) =
𝑁
∑

𝑖=1
ð(𝑥 − 𝑥𝑖), (1)

where 𝑥𝑖 denotes the coordinate of targets, ð(𝑥 − 𝑥𝑖) represents the
impulse function to mark the center of the target as 1 in the matrix,
while the rest is marked as 0.

Subsequently, we obtain distinct regions for each 𝑥𝑖. Choose an
appropriately sized Gaussian kernel enables its range to accurately
represent the object’s contour size. The formula is given by:

𝐹 (𝑥) =
𝑛
∑

𝑖=1
ð(𝑥 − 𝑥𝑖) × 𝐺𝜎𝑖 (𝑥), 𝑤𝑖𝑡ℎ 𝜎𝑖 = 𝛽𝑑𝑖, (2)

𝑑𝑖 = 1
𝑚

∑𝑚
𝑗=1 𝑑

𝑖
𝑗 , (3)

where 𝐺𝜎𝑖 (𝑥) represents the size of Gaussian kernel. They calculate the
average distance 𝑑𝑖 for 𝑚 points to determine the Gaussian kernel size,
ensuring the accuracy of the density map. 𝛽 is set to 0.3 as a control
constant.

The density distribution map reveals implicit semantic information
concerning vegetation contours. We propose a novel approach for indi-
vidual tree segmentation based on the uniform gradient characteristics
of the density distribution maps.

3.3. Overview

In our method, we have completed the prediction process from
original vegetation to density maps as shown in Fig. 3. Our approach
employs a semi-supervised learning method, where the network inputs
the original remote sensing image 𝑥 ∈ U𝐻×𝑊 ×3, along with a small
number of annotated example box coordinates 𝐵. The output of this
network is the predicted density map 𝑌 ∈ U𝐻×𝑊 . Firstly, we obtain
multi-layer features 𝑀𝑖 through the ResNet101FPN (He et al., 2016)
backbone network. Subsequently, by passing these multi-layer features
through the Multi-layer Coordinate Attention (MLCA), we obtain a
global feature layer 𝐹𝑖 as shown in Fig. 6. The multi-layer features
are then sequentially input into the MAC module as shown in Fig. 4.
Initially, a coordinate mapping and upsampling layer pool the features
to a uniform size as shown in Fig. 5. Different factors are applied to
scale the example features in order to obtain local features 𝐸𝑖. These
local features 𝐸𝑖 are then convoluted with 𝐹𝑖 through self-convolutional
operations. This process results in correlated feature layers 𝐶𝑖. The final
correlated feature map 𝐶 is obtained by fusing these relevant feature
layers 𝐶𝑖 through max-pooling. Fused correlated 𝐶 is then input into
our regression layer. We further refine the model parameters through
the Adaption module(Ap) to obtain the final output density map 𝑌 . The
detailed process is as follows:

𝑀𝑖 =  (B101(𝑥), 𝑖), (4)

𝐹𝑖 = 𝑀𝐿𝐶𝐴(𝑀𝑖), (5)

where B101(𝑥) denotes the set of Multi-features layers obtained by
processing the input image 𝑥 through the ResNet101.  refers to the
Feature Pyramid Network (FPN) operation. 𝑖 refers to the 𝑖th feature
layer of Multi-features layers. 𝑀𝐿𝐶𝐴 stands for performing Coordinate
Attention learning on each layer of feature maps obtained through FPN
operations.
5

Fig. 4. Mapping and correlation block.

Fig. 5. Flowchart for obtaining the local feature layer.

𝐸𝑖 = 𝐺𝑀𝑃 (𝑀𝑎𝑝(𝐹𝑖, 𝐵)) × 𝑆𝑗 , (6)

where 𝑀𝑎𝑝(𝐹𝑖, 𝐵) implies mapping the global feature layer 𝐹𝑖 in con-
junction with the example box coordinates 𝐵. And the 𝐺𝑀𝑃 represents
pooling different example features into a unified size. 𝑆𝑗 is the scale
factor.

𝐶𝑖 = 𝐶𝑜𝑛𝑣(𝐹𝑖, 𝐸𝑖), (7)

𝐶 = 𝐶𝑂𝑁(𝐺𝑀𝑃 (𝐶𝑖, 𝐶𝑖−1)), (8)

where 𝐶𝑖 = 𝐶𝑜𝑛𝑣(𝐹𝑖, 𝐸𝑖) refers that we using the layer 𝐸𝑖 as the convolu-
tional layer to perform convolutional operations on layer 𝐹𝑖, which gets
the relationship between the local features and global features. 𝐶𝑂𝑁
represents the concatenating information from different feature layers.

𝑌 = 𝐴𝑑𝑎𝑝(𝑒𝑔(𝐶), 𝑓 𝑙𝑎𝑔), (9)
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Fig. 6. Coordinate attention block.
Fig. 7. Samples from four datasets.

where 𝑒𝑔(𝐶) represents the initial density map obtained using the
regression module. 𝑓𝑙𝑎𝑔 denotes whether the Ap module is used for
fine-tuning parameters.

3.4. Multi-layer coordinate attention

In our network, the combination of the ResNet101FPN layer with
MLCA allows for better preservation of spatial-channel feature infor-
mation. This facilitates the adjustment for the subsequent MAC module
and highlights regions of interest. Inspired by Multi-view learning (Ye
et al., 2022), we apply Coordinate Attention (Hou et al., 2021) to the
output map of each ResNet101FPN layer as shown in Fig. 6, which is
motivated by its lightweight. It enhances our model’s ability for cross-
regional recognition and further mitigates the impact of background
noise on vegetation.

Previous attention mechanisms often employ global pooling to com-
press the feature information. However, this often results in the loss
of target positional information. In contrast, the Coordinate Attention
(CA) mechanism encodes features along a single dimension, effec-
tively preserving the key spatial information. The specific process is
as follows:

𝑧𝑐 =
1

𝐻 ×𝑊

𝐻
∑

𝑊
∑

𝑥𝑐 (𝑖, 𝑗), (10)
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𝑖=1 𝑗=1
where 𝑥𝑐 (𝑖, 𝑗) represents the two-dimensional feature map of the chan-
nel 𝑐, with (𝑖, 𝑗) as coordinates. 𝐻 is the height of the feature map,
𝑊 is the width of the feature map, and 𝑧𝑐 represents the generated
channel-encoded feature.

Given the input feature 𝑥, we encode each channel along the hor-
izontal and vertical directions using pooling kernels of size (𝐻, 1) and
(1,𝑊 ) respectively, which yields two directional feature maps. Utilizing
the generated representation information, we reduce the convolutional
dimension as described in Eq. (11):

𝑓 = 𝜎(𝐹1([𝑧ℎ, 𝑧𝑤])), (11)

where 𝑧ℎ and 𝑧𝑤 represent the features of the previously obtained
channel information in different dimensions. 𝐹1 denotes the convolu-
tional dimension reduction. 𝜎 represents the Batch Normalization and
non-linear operations.

Finally, the concatenated features are split back into two-
dimensional features. Convolutional transformations are applied to
increase the channel dimension. The process ensures channel informa-
tion while preserving positional information and capturing regions of
interest. The formula is as follows:

𝑔ℎ = 𝛿(𝐹ℎ(𝑓ℎ)), (12)

𝑔𝑤 = 𝛿(𝐹𝑤(𝑓𝑤)), (13)

𝑦𝑐 (𝑖, 𝑗) = 𝑥𝑐 (𝑖, 𝑗) × 𝑔ℎ𝑐 (𝑖) × 𝑔𝑤𝑐 (𝑗), (14)

where 𝑓ℎ and 𝑓𝑤 represent the channel dimension reduction features in
the height and width respectively. 𝐹ℎ and 𝐹𝑤 indicate convolutional op-
erations for dimension expansion. 𝛿 represents the Sigmoid operation.
𝑔ℎ and 𝑔𝑤 are the weight vectors obtained for different dimensions. 𝑦𝑐
represents the obtained final feature maps.

3.5. Mapping and correlation structure

This module aims to obtain relevant features as shown in Fig. 4.,
and its operation can be divided into two steps. The first step involves
mapping the input global feature layer 𝐹𝑖 with the bounding box coor-
dinates 𝐵 to obtain feature layer 𝐸𝑖. The Mapping operation is to extract
features from the specific region of interest corresponding to an individ-
ual tree. The extracted region serves as a template for the subsequent
feature extraction. For the extracted sample feature maps, we generate
feature map groups by undergoing multi-scale transformations. The
second step entails using 𝐸𝑖 as a convolutional layer to connect the
global feature layer 𝐹𝑖 and obtain the relevant feature layer 𝐶𝑖. Previous
networks mostly upsampled features before merging them into global
features. We believe that this approach does not adequately consider
the relationship between local and global information. Therefore, we
propose the Correlation operation to perform mutual convolution oper-
ations between sample and global features. By utilizing individual-tree
template information, it is possible to further enhance the extraction
of features from the original global features. Finally, these relevant
feature layers are uniformly pooled and concatenated together. Our



International Journal of Applied Earth Observation and Geoinformation 131 (2024) 103923T. Luo et al.
Fig. 8. Visualization comparison of VrsNet and YoloV8 in extraction on complex Vegetation Data. (a) Input images. (b) Prediction results of YoloV8. (c) Prediction results of
VrsNet.
experimental evidence demonstrates that the traditional network sim-
ply concatenates local features with global features is inferior accuracy
compared with the network that implicitly incorporates the correlation
between local and global features.

3.6. Adaption module

The core pre-adaption involves allowing the network to learn the
features of the image before making predictions. The purpose is to
enable the network to better understand the presentation size of the
density distribution and determine the area range. This helps in achiev-
ing more accurate predictions for segmentation and counting, espe-
cially in scenarios with varying spatial scales. Within this module, the
designed ‘‘One-Trend’’ loss tends to make the density of the sample
box region approach 1. This delineates the area of tree crowns, and
subsequently, ‘‘perturbation’’ loss is applied to constrain the Gaussian
distribution. The number of steps is elastically controllable, playing a
role in fine-tuning the network parameters for the regression module.
This flexibility allows for enhancing the performance of the regression
module.

3.7. Loss

This section introduces four loss functions used in VrsNet, namely
Mae loss, Dice loss, One-trend loss, and Perturbation loss. During
training, we utilize a combination of Mae loss and Dice loss. During
the Adaption module, we propose a new one-trend loss and combine it
with the Perturbation loss.

𝑫𝒊𝒄𝒆 𝒍𝒐𝒔𝒔− Drawing from Fausto Milletari’s gradient visualization
in semantic segmentation (Milletari et al., 2016), we incorporate the
Dice loss. Our network aims to constrain shape differences between
the predicted 𝑌 and actual 𝐺 density maps, particularly in scenes with
pronounced imbalances between positive and negative samples. This
constraint enhances the network’s ability to the intricate texture and
morphology of trees as described by the following formula:

𝐺
′
= 𝑏𝑖𝑛(𝑆𝑖𝑔(𝐺),∅), (15)

𝑌
′
= 𝑏𝑖𝑛(𝑆𝑖𝑔(𝑌 ),∅), (16)

𝑆𝑖𝑔(𝑥) = 1
1 + 𝑒−𝑥

, (17)

where 𝑆𝑖𝑔 represents the mapping of the density map using the Sigmoid
function, we then set a threshold ∅ = 0.5 and binarize 𝑌 and 𝐺,
mapping values greater than ∅ to 1 and the rest to 0. The binarized
density maps are denoted as 𝑌 ′ and 𝐺′. Finally, by inputting these
binarized maps into the Dice loss, we quantify the contour similarity
between the two maps. The Dice loss can be described as:

𝐷𝑖𝑐𝑒 = 1 −
2 |
|

𝐺′ ⋂ 𝑌 ′
|

| , (18)
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|𝐺′
| + |𝑌 ′

|

Table 1
The kernels of generating ground truth.

Datasets Generating method

TreeFsc
Geometry-adaptive kernelsFsc-147

ShanghaiTech_A

Carpk Fixed kernel:10
ShanghaiTech_B Fixed kernel:15

𝑴𝑨𝑬 𝒍𝒐𝒔𝒔− MAE (Mean Absolute Error) is a metric that measures
the difference between predicted values and actual observations. It
calculates the average of the prediction errors for each individual. The
formula is:

𝑀𝑎𝑒 =
1
𝑛

𝑛
∑

𝑖=1
|𝑌𝑖 − 𝐺𝑖|, (19)

Therefore, the loss during the training phase is described as:

𝑡𝑟𝑎𝑖𝑛 = 𝛼1𝑀𝑎𝑒 + 𝛼2𝐷𝑖𝑐𝑒, (20)

where 𝛼1 and 𝛼2 are scalar hyper-parameters, and the learning rate
is 10−5. In our testing, recommended values are 𝛼1 = 0.1 and 𝛼2 =
0.00005. This ensures that both losses are maintained at roughly the
same order of magnitude, which helps in keeping the two losses within
a comparable range.

𝑶𝒏𝒆𝒕𝒓𝒆𝒏𝒅 𝒍𝒐𝒔𝒔− Onetrend loss aims to encourage predictions within
the sample region to approach 1 as closely as possible. The penalty
curve is conceptualized as a quadratic curve centered at 1. This ap-
proach ensures that our penalty extends to those values greater than
1. Consequently, we select a quadratic function to mitigate loss near
1. The Min function serves to cap the upper limit, preventing gradient
explosion. The formula is as follows:

𝑂−𝑡 = 𝑚𝑖𝑛(2, 2 × (‖‖
‖

𝑌𝑏𝑖
‖

‖

‖

− 1)
2
), (21)

where 𝑌𝑏𝑖 represents the sum of pixels in the predicted density map
𝑌 within the region 𝑏𝑖, (‖‖

‖

𝑌𝑏𝑖
‖

‖

‖

− 1)2 calculates the proximity of the
estimated quantity. 𝑚𝑖𝑛 is the Miniaturization function, which limits
the penalty strength.

𝑷𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏 𝒍𝒐𝒔𝒔− Perturbation loss is inspired by the tracking al-
gorithm based on correlation filters (Ranjan et al., 2021). The predicted
density map 𝑌 is the result of the correlated feature map. Essentially,
the correlation response map should exhibit a Gaussian distribution for
density estimation at the sample positions. Therefore, given a Gaussian
density window 𝐺ℎ×𝑤, this loss can be described as:

𝑃𝑒𝑟 =
∑

𝑏𝑖𝜖𝐵

‖

‖

‖

𝑌𝑏𝑖 − 𝐺ℎ×𝑤
‖

‖

‖

2

2
, (22)

where 𝐺ℎ×𝑤 represents the Gaussian kernel for the annotated image’s
blurred region, it serves as a way to model the uncertainty or fuzziness
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Fig. 9. Visualization of predicted density contour maps on the TreeFsc dataset, with the red and pink rectangles highlighting regions for detailed inspection. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Visualization of predicted density contour maps on the Carpk dataset, with the red and pink rectangles highlighting regions for detailed inspection. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
in the ground truth annotations. Therefore, the loss during the Adaption
Module can be described as:

𝐴𝑝 = 𝛽1𝑂−𝑡 + 𝛽2𝑃𝑒𝑟, (23)

where we set the default step to 200, and after experimentation, the
values for 𝛽 and 𝛽 are chosen to be 10−8 and 10−4 respectively.
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1 2
3.8. Algorithm complexity

Our algorithm’s key module is the Mapping and Correlation module
for the feature extraction. The measurement of its time complexity
depends on the size of the example feature box. Our model’s input is
not constrained by image size or box size. The CA attention mechanism,
as a lightweight attention mechanism, is not weaker than the MLCA
layer constructed with ResNet101, with parameters at 55.317M. Dur-
ing training, we freeze the ResNet101 parameters and retain the CA
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Fig. 11. Visualization of predicted density contour maps on the Fsc-147 dataset, with the red and pink rectangles highlighting regions for detailed inspection. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Visualization of steps in the Ap module. (a) The original input data. (b) The
results without using the Ap module. (c) The results with a step count of 1000. The
rectangles are used to emphasize detail changes.

module parameters for feature learning. Regression is a conventional
up-sampling triple regression module with 761.053K parameters. For
an image with dimensions of 512 × 512 pixels, it can undergo 30 steps
per second. The total adaption steps depend on the chosen parameter.

4. Experiments details

4.1. Datasets

This section overviews the four datasets utilized in the study. Sam-
ples are depicted in Fig. 7. Table 1 presents the Gaussian kernel sizes
for generating ground truth. These datasets show intricate variations in
scenes and categories, which further demonstrates our model’s abilities
in different visual tasks.
9

𝑻 𝒓𝒆𝒆𝑭𝒔𝒄 is the dataset we primarily investigated, focusing on in-
dividual tree detection. We conduct manual selection and segmenta-
tion to choose suitable vegetation areas for our study. The dataset
encompasses a wide range of spatial scales, vegetation types, and
growth environments. Drawing inspiration from the methodology out-
lined in Boominathan et al. (2016), we employ feature pyramid pro-
cessing on the dataset at different resolutions. 𝑪𝒂𝒓𝒑𝒌 dataset serves
as a classic dataset in the field of object detection. It further chal-
lenges the model’s recognition capabilities under different lighting
conditions. 𝑭𝒔𝒄 − 𝟏𝟒𝟕 is a challenging dataset for few-shot multi-class
density detection, spanning 147 different types of objects with rich
environmental variations. It further tests the model’s cross-class density
recognition capabilities. 𝑺𝒉𝒂𝒏𝒈𝒉𝒂𝒊𝑻 𝒆𝒄𝒉 is used for crowd detection,
which is divided into Part A and Part B. It can evaluate the model’s
density counting capabilities.

4.2. Evaluation metrics

We evaluate the performance and effectiveness of models using the
following metrics:

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝐶𝑖 − 𝐶𝑖
|

|

|

, (24)

𝑅𝑀𝑆𝐸 =
√

1
𝑛
∑𝑛

𝑖=1 (𝐶𝑖 − 𝐶𝑖)
2
, (25)

where MAE (Mean Absolute Error) and RMSE (Root Mean Square Error)
serve as effective evaluation metrics for density detection models. MAE
provides a straightforward measure of average absolute errors. RMSE
accounts for the error magnitude and direction.

4.3. Implement details

We implement the proposed network on PyTorch using an NVIDIA
3080 GPU (12 GB). Our backbone network is ResNet101, and we utilize
pre-trained weights from ImageNet. Our training batch size is 1. All
models are trained for 300 epochs on different datasets, employing the
Adam optimizer with a learning rate set to 0.00001.

5. Experiment results and analysis

This section demonstrates the performance of our network through
quantitative comparisons and visualizations, providing both numerical
metrics and visual quality of our effectiveness.

5.1. Comparison with state-of-the-art methods

We compare the proposed VrsNet with density detection methods,
including the single-branch, multi-column branch, and specially con-
structed architectures. In quantitative analysis and visual comparisons,
we demonstrate our advantages in comparison with CrowdNet (Boom-
inathan et al., 2016), Mcnn (Zhang et al., 2016), CsrNet (Li et al.,
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Table 2
Comparison of results on TreeFsc and Fsc-147.

Methods TreeFsc-Val TreeFsc-Test Fsc-147-Val Fsc-147-Test

Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CANnet 14.03 17.43 13.82 18.97 33.40 87.56 31.19 83.20
CsrNet-b 15.12 20.03 16.24 21.52 36.45 93.12 34.29 87.52
CrowdNet 29.64 35.15 28.93 37.32 49.87 107.42 48.32 98.43
Mcnn 32.97 45.18 35.83 48.24 60.12 124.89 58.43 116.39
FamNet- 17.63 28.12 16.49 30.12 – – – –
SwitchNet 26.63 40.18 28.43 41.25 56.84 112.54 54.83 109.85
FamNet+ 12.47 16.90 13.15 17.03 24.02 ↓ 70.01 ↓ 23.12 ↓ 68.76 ↓

VrsNet(ours) 9.02 ↓ 12.15 ↓ 9.67 ↓ 12.82 ↓ 28.54 80.12 26.30 65.41
Table 3
Comparison of results on Carpk and ShanghaiTech.

Methods Carpk-Val Carpk-Test ShanghaiTech_B-Test ShanghaiTech_A-Test

Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CANnet 9.01 13.63 8.82 13.91 7.9 ↓ 12.3 ↓ 62.43 ↓ 100.15 ↓

CsrNet-b 11.52 15.80 12.61 23.42 10.61 14.97 68.29 115.42
CrowdNet 23.14 36.80 26.93 42.30 25.83 37.21 88.14 129.67
Mcnn 26.89 42.14 32.14 50.18 27.98 42.34 110.24 174.82
FamNet- 15.63 24.61 19.36 37.56 19.42 29.42 – –
SwitchNet 24.63 39.24 27.98 40.15 23.42 34.61 90.40 136.21
FamNet+ 10.21 17.53 12.55 18.03 12.53 19.47 74.15 124.58
VrsNet(ours) 8.04 ↓ 11.43 ↓ 8.64 ↓ 11.71 ↓ 8.28 13.84 70.20 120.15
Table 4
Ablation study.

BackBone FPN-3 FPN-4 Multi-scale
layer CA

Ap Loss MAE RMSE

ResNet50 ✓ 19.14 28.27
ResNet50 ✓ ✓ 14.92 23.41
ResNet50 ✓ ✓ 100 12.45 18.63
ResNet50 ✓ ✓ 200 ✓ 11.19 16.64
ResNet101 ✓ ✓ 500 ✓ 9.02 12.15

Fig. 13. Comparison of different spatial resolutions in the Ap module.

2018), CAN (Liu et al., 2019), FamNet (Ranjan et al., 2021), and
SwichNet (Khoo and Ying, 2019).

By incorporating the correlation between local and global features,
our approach enhances density predictions. Table 2 displays our per-
formance on the TreeFsc and FSC-147 datasets. Specifically, our model
achieves MAE and RMSE of 9.02 and 12.15 on the validation set of
TreeFsc, and 9.67 and 12.82 on the test set. Simultaneously, on the
FSC-147 dataset, our model achieves scores of 28.54 and 80.12 on the
validation set, and 26.30 and 65.41 on the test set.
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Table 5
Quantitative analysis of local example boxes 𝐵.

Number of example boxes MAE RMSE

Fewer(<3) 10.29 15.32
More(≥3) 9.02 12.15

In detection tasks within parking lots and urban scenes, our network
has demonstrated commendable performance as shown in Table 3.
On the Carpk set, our model achieves MAE and RMSE of 8.04 and
11.43, respectively. Additionally, on the ShanghaiTech dataset, our
model attains the second position, following the CAN. These results
demonstrate our model’s superior robustness across different scenarios.

Furthermore, we randomly sample 50 images from the TreeFsc
and compare the actual counting performance with various detection
methods as shown in Fig. 14. The results indicate that our model’s
predictions better align with the ground truth images.

5.2. Visual comparative analysis across diverse datasets

This section employs visual comparative analysis to illustrate differ-
ent density detection results. Additionally, we compare VrsNet with the
classic box-based network YOLOv8 on vegetation with multiple scenes,
multiple species and multiple spatial scales to further demonstrate our
performance.

We conduct a visual comparison on the TreeFsc dataset as shown
in Fig. 9. The density contour maps predicted by our model closely
match the contours of the Ground Truth. This further validates the
performance of our model in individual tree detection and group-tree
counting. Additionally, our method identifies saplings that were not
annotated in the GT images, indicating that our model has learned
the connections between relevant features. We also conduct visual
comparisons on the Carpk dataset as shown in Fig. 10 and the Fsc-147
dataset as shown in Fig. 11. Results indicate that our model exhibits
high transferability for detecting specific categories or objects. This
demonstrates that the connections between local and global features
in our model facilitate cross-category detection learning.

We pre-train YoloV8 on the TreeFsc dataset and select challenging
vegetation images with various scenes, species, and spatial scales to
compare the cross-abilities of models as shown in Fig. 8. The results
indicate that YoloV8 captures relatively clear and fixed-size vegetation
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Fig. 14. Quantitative comparison of various density detection methods in randomly sampled vegetation images across different scenes.
information. However, as the scene becomes complex, YoloV8 fails to
keep the accuracy. This phenomenon mainly stems from the fact that
the receptive fields of traditional object detection networks are mostly
fixed. When their convolutional parameters adapt to one type of scene,
more data learning is needed to transition to another scene. However,
our MAC module does not require training of learnable parameters. It
adapts to detection tasks in any scene through examples and global
feature correlated response maps.

5.3. Ablation study

To demonstrate the effectiveness of each module, we conduct ab-
lation experiments. Firstly, we compared the different modules on
the TreeFsc dataset as shown in Table 4. ‘‘BackBone’’ represents the
main feature extraction network. ‘‘FPN-3’’ denotes using the third stage
of ResNet as our global feature layer. ‘‘FPN-4’’ indicates using the
feature layers from stages three and four of ResNet sequentially into the
MLCA module. ‘‘Multi-scale layer CA’’ indicates whether we employed
the MLCA module. ‘‘Ap’’ represents whether we applied parameter
correction to the regression results, and the numerical values indicating
step sizes. ‘‘Loss’’ means whether we trained the network using Dice loss
function and One-trend loss function. Table 4 demonstrates that our
model exhibits significant advantages in performance when selecting
deeper skeletons and incorporating more layers for feature fusion, with
an MAE of 9.02 and RMSE of 12.15. Additionally, we observe that the
Ap module corrects prediction errors. The two proposed variations have
also played a positive role in model convergence. Table 5 demonstrates
that a greater number of local example boxes 𝐵 helps contribute to the
model learning relevant features.

Additionally, we conduct ablation experiments on four vegetation
remote sensing images using the Ap module. Our images are divided
into two different spatial scales. We perform quantitative analysis and
visualizations to further validate the performance. As the epoch of
the Ap module increases, our model captures more vegetation details
as visualized in Fig. 12. This contributes to the enhancement of the
model’s ability for cross-region, cross-scene, and cross-scale recogni-
tion. Furthermore, we evaluate whether the Ap module assists in our
vegetation counting using the Error Rate defined as follows:

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 = 𝑃𝑟𝑒
𝐺𝑇

, (26)

where 𝑃𝑟𝑒 represents the estimated results and 𝐺𝑇 represents the
ground truth.

To evaluate the function of the Ap module, we conduct 3000 epochs.
In Fig. 13 we observe that the Ap module aids the model in adapting to
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the distribution of vegetation density. This adaption enables the model
to achieve the instance number more effectively.

6. Application

This section utilizes the proposed model trained on our dataset for
practical application on Jiaozuo, China (34◦53′59.9905′′𝑁,
113◦09′00.0057′′𝐸), which can be divided into two parts.

The first part focuses on individual tree crown detection and seg-
mentation. The crown segmentation demonstrates that our robustness
is high in the real scenes by focusing on leaf analysis (Fan et al., 2022;
Zheng et al., 2023; Pu et al., 2022). Our method employs a hierarchical
segmentation approach using contour density maps. We generate a con-
tour of constructing isolines from two-dimensional scalar fields and we
partition the input space into grid cells based on the two-dimensional
density distribution predicted by the VrsNet. We analyze the scalar field
values at each cell to determine the contour shapes. The level parameter
was set to 10. Subsequently, we apply masking to the generated images
based on the contour levels. In the generated set of contour density
maps, different segments can be obtained through threshold filtering
at various levels as presented in Fig. 16. By combining the semantic
information using the density contour maps, the segmentation results
can effectively fit the contour of trees at the crown centers.

The second part involves counting individual trees (Sun et al., 2022)
from various dense scenes. Our testing targets encompass a range
of scene changes at large spatial scales. We compare three different
natural vegetation areas. We measure the natural density of vegetation
by the ratio of the number of trees to the land area (per hectare).
The densities in the three different areas are approximately 400, 215,
and 115 trees per hectare, respectively. From the perspective of image
processing, we can reflect different vegetation image densities by the
number of trees’ ground truth (GT) in the images. They are as follows:
2582, 769, and 241 trees, respectively. These images under different
scenarios collectively test the model’s compatibility in density detec-
tion. Given the abundant vegetation resources, traditional methods for
tree resource conservation and census are time-consuming and labor-
intensive. By performing a comprehensive integration and summation
of the density map, we obtain the total count of trees as shown in
Fig. 15.

In summary, our model reduces the annotation workloads and
achieves accurate dynamic results in individual tree crown segmenta-
tion. Additionally, our model improves the accuracy of the high-density
individual tree-counting task. The two applications are of great value
related to individual tree research.
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Fig. 15. Visualization of the tree counting results at different densities and scales.
7. Conclusions

This paper introduces a novel semi-supervised deep learning net-
work for vegetation density prediction. The innovation lies in its fea-
ture extraction through the MLCA (Multi-layer Coordinate Attention
module), MAC (Mapping and correlation module) and Ap (Adaption
module) compared with traditional networks. The MLCA module is
employed for multi-scale attention learning, enabling the constructed
feature pyramid to highlight regions of interest. The MAC module
emphasizes acquiring correlated features of local and global features
rather than the fusion process, which helps the model learn more
12
semantically informative connections. Simultaneously, the Ap module
assists the model in adapting to the vegetation differences. In quan-
titative analysis of tree detection, the proposed method demonstrates
superior performance, with a 27.6% increase in MAE and a 28.1% in-
crease in RMSE. Furthermore, our work considers the semantic contour
information of Gaussian distributions implicitly contained in density
maps, and we propose three practical downstream applications by the
proposed network: individual tree segmentation, integral counting and
individual tree detection. Our performance is tested on complex large-
scale vegetation datasets with varying scales and achieves high visual
quality and accuracy.
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Fig. 16. Visualization of individual tree detection and segmentation results. (a) The input image. (b) The contour density map. (c) The filled contour density map. (d) The
segmentation results with higher threshold. (e) The segmentation results with lower threshold.
CRediT authorship contribution statement

Taige Luo: Writing – original draft, Methodology. Wei Gao: Writ-
ing – original draft, Formal analysis. Alexei Belotserkovsky: Valida-
tion, Investigation. Alexander Nedzved: Validation, Resources. Weijie
Deng: Visualization, Software. Qiaolin Ye: Validation, Resources. Liy-
ong Fu: Investigation, Funding acquisition. Qiao Chen: Data curation,
Formal analysis. Wenjun Ma: Validation, Writing – original draft.
Sheng Xu: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that there are no conflict of interests, we do not
have any possible conflicts of interest.

Data availability

Data will be made available on request.

Acknowledgments

This research is supported in part by the Fundamental Research
Funds for the Central Nonprofit Research Institution of CAF
(CAFYBB2022ZB002), and in party by National Natural Science Foun-
dation of China (NO. 62102184, NO. 32371877)

References

Boominathan, L., Kruthiventi, S.S.S., Babu, R.V., 2016. CrowdNet: A deep convolu-
tional network for dense crowd counting. In: MM’16: Proceedings of the 2016
ACM Multimedia Conference. pp. 640–644. http://dx.doi.org/10.1145/2964284.
2967300.

Cheng, Y., Lan, S., Fan, X., Tjahjadi, T., Jin, S., Cao, L., 2023. A dual-branch weakly
supervised learning based network for accurate mapping of woody vegetation
from remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 124, 103499. http:
//dx.doi.org/10.1016/j.jag.2023.103499.
13
Fan, X., Luo, P., Mu, Y., Zhou, R., Tjahjadi, T., Ren, Y., 2022. Leaf image based plant
disease identification using transfer learning and feature fusion. Comput. Electron.
Agric. 196, 106892. http://dx.doi.org/10.1016/j.compag.2022.106892.

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for
accurate object detection and semantic segmentation. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition. CVPR, pp. 580–587. http://dx.doi.org/
10.1109/CVPR.2014.81.

Guo, Y., Wu, C., Du, B., Zhang, L., 2022. Density Map-based vehicle counting in remote
sensing images with limited resolution. ISPRS J. Photogramm. Remote Sens. 189,
201–217. http://dx.doi.org/10.1016/j.isprsjprs.2022.05.004.

He, K., Gkioxari, G., Dollar, P., Girshick, R., 2017. Mask R-CNN. In: 2017 IEEE
International Conference on Computer Vision. ICCV, pp. 2980–2988. http://dx.doi.
org/10.1109/ICCV.2017.322.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp.
770–778. http://dx.doi.org/10.1109/CVPR.2016.90.

Hou, Q., Zhou, D., Feng, J., 2021. Coordinate attention for efficient mobile network de-
sign. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2021. pp. 13708–13717. http://dx.doi.org/10.1109/CVPR46437.2021.01350.

Hui, Z., Cheng, P., Yang, B., Zhou, G., 2022. Multi-level self-adaptive individual tree
detection for coniferous forest using airborne LiDAR. Int. J. Appl. Earth Obs. Geoinf.
114, 103028. http://dx.doi.org/10.1016/j.jag.2022.103028.

Jayarao, B., Pillai, S., Sawant, A., Wolfgang, D., Hegde, N., 2004. Guidelines for
monitoring bulk tank milk somatic cell and bacterial counts. J. Dairy Sci. 87 (10),
3561–3573. http://dx.doi.org/10.3168/jds.S0022-0302(04)73493-1.

Jiang, T., Liu, S., Zhang, Q., Xu, X., Sun, J., Wang, Y., 2023. Segmentation of individual
trees in urban MLS point clouds using a deep learning framework based on
cylindrical convolution network. Int. J. Appl. Earth Obs. Geoinf. 123, 103473.
http://dx.doi.org/10.1016/j.jag.2023.103473.

Khoo, Y., Ying, L., 2019. SwitchNet: A neural network model for forward and inverse
scattering problems. SIAM J. Sci. Comput. 41 (5), A3182–A3201. http://dx.doi.org/
10.1137/18M1222399.

Li, Y., Zhang, X., Chen, D., 2018. CSRNet: Dilated convolutional neural networks for
understanding the highly congested scenes. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. CVPR, pp. 1091–1100. http://dx.doi.
org/10.1109/CVPR.2018.00120.

Liu, W., Salzmann, M., Fua, P., 2019. Context-aware crowd counting. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR 2019,
pp. 5094–5103. http://dx.doi.org/10.1109/CVPR.2019.00524.

Liu, Q., Yan, C., Xiao, Q., Yan, G., Fang, L., 2012. Separating vegetation and soil
temperature using airborne multiangular remote sensing image data. Int. J. Appl.
Earth Obs. Geoinf. 17, 66–75. http://dx.doi.org/10.1016/j.jag.2011.10.003.

http://dx.doi.org/10.1145/2964284.2967300
http://dx.doi.org/10.1145/2964284.2967300
http://dx.doi.org/10.1145/2964284.2967300
http://dx.doi.org/10.1016/j.jag.2023.103499
http://dx.doi.org/10.1016/j.jag.2023.103499
http://dx.doi.org/10.1016/j.jag.2023.103499
http://dx.doi.org/10.1016/j.compag.2022.106892
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1016/j.isprsjprs.2022.05.004
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR46437.2021.01350
http://dx.doi.org/10.1016/j.jag.2022.103028
http://dx.doi.org/10.3168/jds.S0022-0302(04)73493-1
http://dx.doi.org/10.1016/j.jag.2023.103473
http://dx.doi.org/10.1137/18M1222399
http://dx.doi.org/10.1137/18M1222399
http://dx.doi.org/10.1137/18M1222399
http://dx.doi.org/10.1109/CVPR.2018.00120
http://dx.doi.org/10.1109/CVPR.2018.00120
http://dx.doi.org/10.1109/CVPR.2018.00120
http://dx.doi.org/10.1109/CVPR.2019.00524
http://dx.doi.org/10.1016/j.jag.2011.10.003


International Journal of Applied Earth Observation and Geoinformation 131 (2024) 103923T. Luo et al.
Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-Net: Fully convolutional neural
networks for volumetric medical image segmentation. In: Proceedings of 2016
Fourth International Conference on 3D Vision. 3DV, pp. 565–571. http://dx.doi.
org/10.1109/3DV.2016.79.

Mundhenk, T.N., Konjevod, G., Sakla, W.A., Boakye, K., 2016. A large contextual dataset
for classification, detection and counting of cars with deep learning. In: Leibe, B.,
Matas, J., Sebe, N., Welling, M. (Eds.), Computer Vision - ECCV 2016, PT III. Vol.
9907, pp. 785–800. http://dx.doi.org/10.1007/978-3-319-46487-9_48.

Nasiri, V., Hawryło, P., Janiec, P., Socha, J., 2023. Comparing object-based and pixel-
based machine learning models for tree-cutting detection with PlanetScope satellite
images: Exploring model generalization. Int. J. Appl. Earth Obs. Geoinf. 125,
103555. http://dx.doi.org/10.1016/j.jag.2023.103555.

Pu, W., Di, C., Shaobo, X., Cheng, W., 2022. A crown guess and selection framework for
individual tree detection from ALS point clouds. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 15, 3533–3538. http://dx.doi.org/10.1109/JSTARS.2022.3171771.

Ranasinghe, Y., Nair, N.G., Bandara, W.G.C., Patel, V.M., 2023. Diffuse-denoise-count:
Accurate crowd-counting with diffusion models. arXiv:2303.12790.

Ranjan, V., Sharma, U., Nguyen, T., Hoai, M., 2021. Learning to count everything. In:
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2021. pp. 3393–3402. http://dx.doi.org/10.1109/CVPR46437.2021.00340.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified,
real-time object detection. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition. CVPR, pp. 779–788. http://dx.doi.org/10.1109/CVPR.2016.
91.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., Garnett, R. (Eds.), Advances in Neural Information Processing
Systems 28. NIPS 2015, Vol. 28.

Sun, Y., Li, Z., He, H., Guo, L., Zhang, X., Xin, Q., 2022. Counting trees in a subtropical
mega city using the instance segmentation method. Int. J. Appl. Earth Obs. Geoinf.
106, 102662. http://dx.doi.org/10.1016/j.jag.2021.102662.

Tolan, J., Yang, H.-I., Nosarzewski, B., Couairon, G., Vo, H.V., Brandt, J., Spore, J.,
Majumdar, S., Haziza, D., Vamaraju, J., Moutakanni, T., Bojanowski, P., Johns, T.,
White, B., Tiecke, T., Couprie, C., 2024. Very high resolution canopy height
maps from RGB imagery using self-supervised vision transformer and convolutional
decoder trained on aerial lidar. Remote Sens. Environ. 300, 113888. http://dx.
doi.org/10.1016/j.rse.2023.113888, URL: https://www.sciencedirect.com/science/
article/pii/S003442572300439X.
14
Wang, C., Zhang, H., Yang, L., Liu, S., Cao, X., 2015. Deep people counting in extremely
dense crowds. In: MM’15: Proceedings of the 2015 ACM Multimedia Conference.
pp. 1299–1302. http://dx.doi.org/10.1145/2733373.28063370-12345-67-8/90/01.

Xu, S., Li, X., Yang, H., Xu, S., 2023. R-ProjNet: an optimal rotated-projection neural
network for wood segmentation from point clouds. Remote Sens. Lett. 14 (1),
60–69. http://dx.doi.org/10.1080/2150704X.2022.2163203.

Xu, W., Liang, D., Zheng, Y., Xie, J., Ma, Z., 2021a. Dilated-scale-aware category-
attention ConvNet for multi-class object counting. IEEE Signal Process. Lett. 28,
1570–1574. http://dx.doi.org/10.1109/LSP.2021.3096119.

Xu, S., Wang, R., Wang, H., Yang, R., 2021b. Plane segmentation based on the optimal-
vector-field in LiDAR point clouds. IEEE Trans. Pattern Anal. Mach. Intell. 43 (11),
3991–4007. http://dx.doi.org/10.1109/TPAMI.2020.2994935.

Xu, S., Ye, N., Xu, S., Zhu, F., 2018. A supervoxel approach to the segmentation
of individual trees from LiDAR point clouds. Remote Sens. Lett. 9 (6), 515–523.
http://dx.doi.org/10.1080/2150704X.2018.1444286.

Ye, Q., Huang, P., Zhang, Z., Zheng, Y., Fu, L., Yang, W., 2022. Multiview learning
with robust double-sided twin SVM. IEEE Trans. Cybern. 52 (12), 12745–12758.
http://dx.doi.org/10.1109/TCYB.2021.3088519.

Zang, Y., Wang, S., Guan, H., Peng, D., Chen, J., Chen, Y., Delavar, M.R., 2024.
VAM-Net: Vegetation-Attentive deep network for Multi-modal fusion of visible-
light and vegetation-sensitive images. Int. J. Appl. Earth Obs. Geoinf. 127, 103642.
http://dx.doi.org/10.1016/j.jag.2023.103642.

Zhang, Z., Rong, J., Qi, Z., Yang, Y., Zheng, X., Gao, J., Li, W., Yuan, T., 2024. A
multi-species pest recognition and counting method based on a density map in
the greenhouse. Comput. Electron. Agric. 217, 108554. http://dx.doi.org/10.1016/
j.compag.2023.108554.

Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y., 2016. Single-image crowd counting via
multi-column convolutional neural network. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition. CVPR, pp. 589–597. http://dx.doi.org/10.1109/
CVPR.2016.70.

Zhao, Q., Lyu, S., Zhao, H., Liu, B., Chen, L., Cheng, G., 2024. Self-training guided
disentangled adaptation for cross-domain remote sensing image semantic segmen-
tation. Int. J. Appl. Earth Obs. Geoinf. 127, 103646. http://dx.doi.org/10.1016/j.
jag.2023.103646.

Zheng, J., Yuan, S., Li, W., Fu, H., Yu, L., 2023. A review of individual tree crown
detection and delineation from optical remote sensing images. arXiv:2310.13481.

http://dx.doi.org/10.1109/3DV.2016.79
http://dx.doi.org/10.1109/3DV.2016.79
http://dx.doi.org/10.1109/3DV.2016.79
http://dx.doi.org/10.1007/978-3-319-46487-9_48
http://dx.doi.org/10.1016/j.jag.2023.103555
http://dx.doi.org/10.1109/JSTARS.2022.3171771
http://arxiv.org/abs/2303.12790
http://dx.doi.org/10.1109/CVPR46437.2021.00340
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://refhub.elsevier.com/S1569-8432(24)00277-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00277-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00277-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00277-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00277-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00277-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00277-2/sb23
http://dx.doi.org/10.1016/j.jag.2021.102662
http://dx.doi.org/10.1016/j.rse.2023.113888
http://dx.doi.org/10.1016/j.rse.2023.113888
http://dx.doi.org/10.1016/j.rse.2023.113888
https://www.sciencedirect.com/science/article/pii/S003442572300439X
https://www.sciencedirect.com/science/article/pii/S003442572300439X
https://www.sciencedirect.com/science/article/pii/S003442572300439X
http://dx.doi.org/10.1145/2733373.28063370-12345-67-8/90/01
http://dx.doi.org/10.1080/2150704X.2022.2163203
http://dx.doi.org/10.1109/LSP.2021.3096119
http://dx.doi.org/10.1109/TPAMI.2020.2994935
http://dx.doi.org/10.1080/2150704X.2018.1444286
http://dx.doi.org/10.1109/TCYB.2021.3088519
http://dx.doi.org/10.1016/j.jag.2023.103642
http://dx.doi.org/10.1016/j.compag.2023.108554
http://dx.doi.org/10.1016/j.compag.2023.108554
http://dx.doi.org/10.1016/j.compag.2023.108554
http://dx.doi.org/10.1109/CVPR.2016.70
http://dx.doi.org/10.1109/CVPR.2016.70
http://dx.doi.org/10.1109/CVPR.2016.70
http://dx.doi.org/10.1016/j.jag.2023.103646
http://dx.doi.org/10.1016/j.jag.2023.103646
http://dx.doi.org/10.1016/j.jag.2023.103646
http://arxiv.org/abs/2310.13481

	VrsNet - density map prediction network for individual tree detection and counting from UAV images
	Introduction
	Related work
	Bounding-box-based object detection methods
	Density-based object detection methods
	Individual-tree segmentation methods

	The proposed method
	Our work
	Density map generation algorithm
	Overview
	Multi-layer coordinate attention
	Mapping and Correlation Structure
	Adaption Module
	Loss
	Algorithm complexity

	Experiments details
	Datasets
	Evaluation metrics
	Implement details

	Experiment results and analysis
	Comparison with state-of-the-art Methods
	Visual Comparative Analysis Across Diverse Datasets
	Ablation Study

	Application
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


